A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shemelin, V.D.

Paper Title Page
THP035 Multipactor in Minimum Electric Field Regions of Transmission Lines and Superconducting RF Cavities 860
 
  • S.A. Belomestnykh, V.D. Shemelin
    CLASSE, Ithaca, New York
 
 

Funding: Work is supported by the National Science Foundation grant PHY 0131508
Multipactor in beam-pipe transitions of superconducting rf cavities can be explained using rf potential well theory*. In this paper we present simulation results supporting this explanation for both rf cavities and transmission lines.


*S. Belomestnykh and V. Shemelin, "Multipacting-free Transitions between Cavities and Beam-pipes," submitted to Nuclear Instruments and Methods in Physics Research A.

 
WE104 First Tests of the Cornell University ERL Injector 699
 
  • B.M. Dunham, I.V. Bazarov, S.A. Belomestnykh, M.G. Billing, E.P. Chojnacki, Z.A. Conway, J. Dobbins, R.D. Ehrlich, M.J. Forster, S.M. Gruner, G.H. Hoffstaetter, V.O. Kostroun, Y. Li, M. Liepe, X. Liu, D.G. Ouzounov, H. Padamsee, D.H. Rice, V.D. Shemelin, C.K. Sinclair, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, V. Veshcherevich, T. Wilksen
    CLASSE, Ithaca, New York
 
 

Funding: Work supported by the National Science Foundation under contract PHY 0131508
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. The very small electron-beam emittance would produce an X-ray source that is significantly better than any existing storage-ring based light source. One major difference between an ERL and a typical light source is that the final electron beam emittance, and thus the X-ray beam brightness, is determined by the electron injector rather than the storage ring. We are currently constructing and commissioning an injector for an ERL with the goal of demonstrating the low emittances and high beam power required. The injector is designed to accelerate up to 100 mA cw electron bunches of 77 pC/bunch with an energy of 5 MeV (33 mA at 15 MeV) using 1.3 GHz superconducting cavities. A full suite of diagnostics will allow a complete phase space characterization for comparison with simulations and with the requirements. We will describe the current status of the injector along with results, difficulties and challenges to date.

 

slides icon

Slides