A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sanderson, D.

Paper Title Page
THP033 Superconducting Quarter-Wave Resonator Cavity and Cryomodule Development for a Heavy Ion Re-accelerator 854
 
  • W. Hartung, J. Bierwagen, S. Bricker, C. Compton, J. DeLauter, P. Glennon, M. Hodek, M.J. Johnson, F. Marti, P.S. Miller, D. Norton, J. Popielarski, L. Popielarski, D. Sanderson, J. Wlodarczak, R.C. York
    NSCL, East Lansing, Michigan
  • A. Facco
    INFN/LNL, Legnaro, Padova
  • E.N. Zaplatin
    FZJ, Jülich
 
 

A superconducting linac is being planned for re-acceleration of exotic ions produced by the Coupled Cyclotron Facility at Michigan State University. The re-accelerator will include a gas stopper, a charge breeder, a normal conducting radio-frequency quadrupole, and two types of superconducting quarter-wave resonators (QWRs) for re-acceleration to energies of up to 3 MeV per nucleon initially, with a subsequent upgrade path to 12 MeV per nucleon. The QWRs (80.5 MHz, optimum beta = 0.041 and 0.085, made from bulk niobium) are similar to existing cavities presently used at INFN-Legnaro. The re-accelerator's cryomodules will accommodate up to 8 cavities, along with superconducting solenoids for focussing. Active and passive shielding is required to ensure that the solenoids' field does not degrade the cavity performance. First prototypes of both QWR types have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated: one QWR, one solenoid, and two other beam line elements have been installed inside. This paper will cover the re-accelerator cavity and cryomodule prototyping efforts, results so far, and future plans.

 

slides icon

Slides