A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rawnsley, W.R.

Paper Title Page
MOP018 ISAC-II Superconducting Linac Upgrade - Design and Status 97
 
  • R.E. Laxdal, R.J. Dawson, M. Marchetto, A.K. Mitra, W.R. Rawnsley, T.C. Ries, I. Sekachev, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-II superconducting linac, operational since April 2006, adds 20 MV accelerating potential to the ISAC Radioactive Ion Beam (RIB) facility. An upgrade to the linac, in progress, calls for the addition of a further 20 MV of accelerating structure by the end of 2009. The new installation consists of twenty 141 MHz quarter wave cavities at a design beta of 11%. The cavities will be housed in three cryomodules with six cavities in the first two cryomodules and eight cavities in the last. A second Linde TC50 refrigerator has been installed and commissioned to provide cooling for the new installation. The design incorporates several new features as improvements to the existing cryomodules. They include a four point support frame for the cavity strongback, a modified LN2 circuit internal to the cryomodule and a new design for the mechanical motion of the rf coupling loop. A summary of the design and the current status of the cryomodule production and supporting infrastructure will be presented.

 
TUP071 The ISAC-II SC-Linac Over Current Monitoring System 557
 
  • A.K. Mitra, J.T. Drozdoff, K. Langton, R.E. Laxdal, M. Marchetto, W.R. Rawnsley, J.E. Richards
    TRIUMF, Vancouver
 
 

A personnel protection system is used to monitor the ion beam current into the experimental hall from the ISAC-II SC-linac. Two resonant capacitive pickups in the transfer line operate at the third harmonic of the bunch rate, 35.36 MHz, Ion charge, velocity and bunch width affect the sensitivity so calibration with dc Faraday cups is needed. Each monitor has a single conversion receiver with an active mixer. LO signals are provided by a frequency synthesizer locked to the accelerator synthesizer. The 1250 Hz IF signals are amplified, filtered with a 100 Hz bandwidth and amplitude detected. No image rejection is used as the background is due to on-frequency leakage from the RFQ and bunchers. An antenna in each monitor loosely couples a pulsed rf test signal to each pickup. These induced signals are mixed down to 11875 Hz, filtered, detected and used to provide watchdog signals. The measured currents are displayed through our EPICS control system which allows setting of the gain ranges, trip levels and conversion factors. The signals are also processed independently by dedicated ADC's and FPGA's to cause the Safety system to trip the beam if the current exceeds a nominal 10 nA.