A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pisent, A.

Paper Title Page
MOP022 The ALPI Super-Conducting Accelerator Upgrade for the SPES Project 109
 
  • P.A. Posocco, G. Bisoffi, A. Pisent
    INFN/LNL, Legnaro, Padova
  • P.A. Posocco
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
 
 

The SPES project* at Laboratori Nazionali di Legnaro foresees the contruction of a RIB facility based on a fission target driven by a 40 MeV proton beam. After the 238U carbide target the 1+ charged ions will be selected by a high resolution mass spectometer, charge enhanced by a charge breeder and accelerated up to 10 MeV/A for 132Sn. The Legnaro superconducting accelerator complex, PIAVE injector and ALPI main accelerator, in its present configuration fits the requirements for SPES post acceleration. Nevertheless an upgrade of its performaces both in overall transmission and final energy is needed and a solution which minimizes the impact on the present structures will be presented.


*http://www.lnl.infn.it/~spes/

 
MOP036 The IFMIF-EVEDA RFQ: Beam Dynamics Design 145
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
 
 

The IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) project foresees the construction of a high intensity deuteron accelerator up to 9 MeV, with the characteristics required for the actual IFMIF facility. The linac will be installed in Rokkasho, and INFN is in charge of the construction of a 5 MeV, 125 mA, deuteron RFQ operating at 175 MHz. In this article the beam dynamics design of this challenging RFQ is described, namely the design, the main outcomes in terms of beam particles physics, and finally the study of mechanical and rf field error tolerances. The RFQ design method has been aimed to the optimization of the voltage and R0 law along the RFQ, the accurate tuning of the maximum surface field and the enlargement of the acceptance in the final part of the structure. As a result this RFQ is characterized by a length shorter than in all previous design, very low losses (especially at higher energy) and small rf power dissipation.

 
MOP037 RF Design of the IFMIF-EVEDA RFQ 148
 
  • F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro, Padova
  • F. Grespan
    Università degli Studi di Milano, Milano
 
 

The RFQ of IFMIF-EVEDA project is characterized by very challenging specifications, with 125 mA of deuteron current accelerated up to 5 MeV. Upon beam dynamics studies, it has been chosen a law for the variation of R0 and voltage along the structure; this law provides a significant reduction in terms of structure length, beam losses and rf power consumption. Starting from these outcomes, the rf study of the RFQ, aimed at determining the optimum design of the cavity shape, was performed. The stabilization issues were also addressed, through the analysis of the RFQ sensitivity to geometrical errors, by means of perturbative theory-based algorithms developed for this purpose . Moreover the determination of the main 3D details of the structure was also carried out. In this article the results of the rf studies concerning the above-mentioned topics are outlined.

 
MOP038 Fabrication and Testing of TRASCO RFQ 151
 
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro, Padova
  • S.J. Mathot
    CERN, Geneva
 
 

The Legnaro National Laboratory (LNL) is building the 30 mA, 5 MeV front end injector for the production of intense neutron fluxes for interdisciplinary application. This injector comprises a proton source, a low energy beam transport line (LEBT), a radio frequency quadrupole (RFQ) and a beam transport line designed to provide a 150 kW beam to the berillium target used as neutron converter. The RFQ, developed within TRASCO project for ADS application, is designed to operate cw at 352.2 MHz. The structure is made of OFE copper and is fully brazed. The RFQ is built in 6 modules, each approximately 1.2 meter long. This paper covers the mechanical fabrication, the brazing results and acceptance tests for the various modules.

 

slides icon

Slides

 
MOP049 Drift Tube Linac Design and Prototyping for the CERN Linac4 184
 
  • S. Ramberger, N. Alharbi, P. Bourquin, Y. Cuvet, F. Gerigk, A.M. Lombardi, E.Zh. Sargsyan, M. Vretenar
    CERN, Geneva
  • A. Pisent
    INFN/LNL, Legnaro, Padova
 
 

The Drift Tube Linac (DTL) for the new linear accelerator Linac4 at CERN will accelerate H- ion beams of up to 40mA average pulse current from 3 to 50MeV. It is designed to operate at 352.2MHz and at duty cycles of up to 10%, if required by future physics programmes. The accelerating field is 3.2MeV/m over the entire length. Permanent magnet quadrupoles are used as focusing elements. The 3 DTL cavities consist of 2, 4 and 4 segments of about 1.8m each, are equipped with 35, 41 and 29 drift tubes respectively, and are stabilized with post-couplers. Several new features have been incorporated in the basic design. The electro-magnetic design has been refined in order to reduce peak field levels in critical areas. The mechanical design aims at reducing the complexity of the mechanical structure and of the adjustment procedure. Drift tubes and holders on the tanks that are machined to tight tolerances do not require adjustment mechanisms like screws or bellows for drift tube positioning. A scaled cold model, an assembly model and a full-scale prototype of the first half tank have been constructed to validate the design principles. The results of metrological and rf tests are presented.

 
MOP054 Experience with Stripping Carbon Foils in ALPI Super-Conducting Accelerator 199
 
  • P.A. Posocco
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • D. Carlucci, A. Pisent, M. Poggi, P.A. Posocco
    INFN/LNL, Legnaro, Padova
 
 

The superconducting linac ALPI, injected either by a XTU tandem or by the superconducting RFQ of PIAVE, is composed by 3 cryostats of bulk Nb cavities (β=0.056) and 13 cryostats of Nb sputtered on Cu cavities (β=0.11 and β=0.13), for a total of 64 cavities and an equivalent voltage of 35MV. The linac is build up in two branches connected by an achromatic and isochronous U-bend. In January 2007 a stripping station equipped with carbon foils of different thickness was placed after 6 cryostats, before the U-bend, to test the feasibility of acceleration and transport of a charge enhanced beam. The study was performed with 4 different beams (Ca, Ar, Zr and Xe) and a complete data analysis has been carried out.