A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ohsawa, S.

Paper Title Page
TUP010 Pulse-to-Pulse Mode Switching of KEKB Injector Linac 407
 
  • T. Kamitani, K. Furukawa, N. Iida, M. Ikeda, K. Kakihara, M. Kikuchi, T. Mimashi, S. Ohsawa, M. Satoh, A. Shirakawa, T. Sugimura, T. Suwada, K. Yokoyama
    KEK, Ibaraki
 
 

KEKB injector linac supplies electron and positron beams to the KEKB storage rings and the synchrotron radiation facility rings (PF, AR) as well. Injection modes to these four destinations are switched by inserting and extracting positron generation target, changing magnet parameters and acceleration rf phases. To enable pulse-by-pulse switching in three out of the four modes, a pulse bend and pulse steerings are introduced. For DC quads and DC steerings, compatible beam-optical settings for beams of different beam-energy profiles are introduced. We have been performing beam studies to establish the pulse-by-pulse mode switching for daily beam operation. This paper describes a scheme for the mode switching and reports on an achievement of the beam studies.

 
TUP063 Development of a New Highly Bright X-ray Generator 539
 
  • S. Ohsawa, M. Ikeda, N. Sakabe, T. Sugimura
    KEK, Ibaraki
 
 

A new type of rotating anticathode X-ray generator has been developed, in which the electron beam irradiates the inner surface of a U-shaped anticathode. A high-flux electron beam is focused on the inner surface by optimizing the shape of the bending magnet. In order to minimize the sizes of the X-ray source, the electron beam is focused strongly in a short distance by the bending magnet which is small and is close to the rotating anticathode. The power of the electron beam can be increased to the point at which the irradiated part of the inner surface is melted, because a strong centrifugal force fixes the melted part on the inner surface. We have achieved emission of X-rays 10 times more brilliant than can be attained by a conventional rotating anticathode. The development is still in progress. New results will be reported in detail.