A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Nagaitsev, S.

Paper Title Page
MOP011 An 8 GeV CW Linac With High Potential Beam Power 76
  • M. Popovic, C.M. Ankenbrandt, A. Moretti, S. Nagaitsev, T.J. Peterson, G.V. Romanov, N. Solyak, V.P. Yakovlev, K. Yonehara
    Fermilab, Batavia
  • R.A. Baartman
    TRIUMF, Vancouver
  • I.B. Enchevich, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
  • R.A. Rimmer
    JLAB, Newport News, Virginia

Modern technology allows us to consider operating an 8 GeV Linac in a cw mode to accelerate a high-current H- beam. By using appropriate accumulation rings, the linac could provide simultaneous beams for direct neutrino production, neutrino factories, fixed target experiments, and muon colliders. Several other unique accelerator applications could also be served and improved by the same continuous beam, including studies of energy production and nuclear waste reduction by transmutation, rare muon decay searches, and muon catalyzed fusion. The trade-offs between cw operation compared to pulsed operation that are considered include the maximum rf gradient and corresponding linac length or energy, the rf frequency, rf peak power and coupler requirements, and refrigeration. Methods for accumulating the beam from a cw linac to serve the special needs of the potential future Fermilab programs mentioned above are considered. In this paper we also examine the use of a cyclotron as a source of high current beams to reduce the cost and complexity of the linac front end.

TUP104 A High-Brightness Low-Energy Photoinjector Option for the Fermilab Electron Accelerator Facility 648
  • P. Piot, D. Mihalcea
    Northern Illinois University, DeKalb, Illinois
  • M. Church, S. Nagaitsev, Y.-E. Sun
    Fermilab, Batavia
  • I.V. Pogorelov
    LBNL, Berkeley, California

Funding: Work supported by Fermi Research Alliance LLC. Under DE-AC02- 07CH11359 with the U.S. DOE and by the Department of Education under contract P116Z010035 with Northern Illinois University
Fermilab is currently constructing a GeV-scale electron accelerator test facility. The accelerator will serve as a backbone for several Fermilab R&D programs, e.g., to test subsystem associated to project-X, ILC and the muon collider program. It is also anticipated that this facility will support beam physics and accelerator R&D programs such as testing of novel acceleration techniques, beam diagnostics and radiation sources concepts. In this paper we describe a possible option for the electron injector based on a photoemission rf gun. Optimization and performance studies of this ~50 MeV photoinjector are performed with various tracking programs (Astra, GPT, Impact-T, Impact-Z). We explore the performances of the magnetic bunch compressor which is extremely challenging at 50 MeV due to strong phase space dilution via collective effects (space charge and coherent synchrotron radiation). We also investigate the generation of flat beams with very high transverse emittance ratio using a round-to-flat beam transformer.

TUP112 Laser Timing Jitter Measurements at the Fermilab A0 Photoinjector 664
  • J.K. Keung
    University of Pennsylvania, Philadelphia, Pennsylvania
  • S. Nagaitsev, J. Ruan
    Fermilab, Batavia

The Fermilab A0 Photoinjector is a 16 MeV high-intensity, low emittance electron linac used for advanced accelerator R&D. To achieve a high quality beam here it is important to maintain a stable laser in terms of both intensity and timing. This paper presents our measurement of the laser timing jitter, which is the random late or early arrival of the laser pulse. The seed laser timing jitter has been measured to less than 200 fs, by examining the power spectrum of the signal of a fast photodiode illuminated by it. The pulsed and pumped laser timing jitter has been measured with limited resolution to less than 1.4 ps, by examining the phase of a cavity impulsively excited by the signal from a fast photodiode illuminated by the laser pulse.

WE203 Fermilab's Project X 714
  • S. Nagaitsev
    Fermilab, Batavia

The present status and plans for Fermilab's Project X will be reviewed.


slides icon


THP113 Optimal Coupler and Power Settings for Superconductive Linear Accelerators 1063
  • J. Branlard, B. Chase, S. Nagaitsev, O.A. Nezhevenko, J. Reid
    Fermilab, Batavia

Funding: FRA
In this paper we present a model for the rf power distribution to multiple super-conductive cavities from a single klystron. The goal of this model is to find a distribution scheme in which the cavities are operated as close to their quench limit as possible. The approach presented in this work consists of setting all cavities to the same QL value by adjusting the power coupler, and optimizing the power (Pk) distribution individually to each cavity to maximize the vector sum voltage. The proposed approach yields an operating gradient very close to the theoretical limit and offers a great operational benefit as the gradient stability is conserved for any beam current.

C. Nantista, K.L.F. Bane, C. Adolphsen, RF Distribution Optimization in
the Main Linacs of the ILC. Proceedings of PAC07, Albuquerque,
New Mexico, USA.