A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lang, R.

Paper Title Page
TUP115 Beam Transport Effects for ECRIS 670
  • P. Spädtke, R. Lang, J. Mäder, J. Roßbach, K. Tinschert
    GSI, Darmstadt

Experimental results from ion beams, extracted from an Electron Cyclotron Resonance ion source (ECRIS) are presented and compared with different models used for simulation. The model for the simulation has to satisfy different facts: The energy of ions within the plasma is in the eV-range. Electrons have a different energy distribution: there are hot electrons (up to MeV range), but also low energy electrons, responsible for charge neutrality within the plasma. Because the gyration radius of ions is within the mm-range and below, ions can be extracted only if they are located on a magnetic field line which goes through the extraction aperture. Because of the gradient dBz/dz of the mirror field only these ions can be extracted, which have enough energy in direction of the field line. These conditions are fulfilled for ions which are going to be lost through the loss cone created by the hexapole. The extracted beam shows a typical behavior for an ECRIS: when the beam is focused by a lens (here a solenoid) directly behind extraction, the initial round and hollow beam develops wings with a 120-degree symmetry. These wings has influence on the beam emittance.