A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kleman, K.J.

Paper Title Page
TUP050 Design and Optimization of Electron Bunch Acceleration and Compression 512
  • J. Wu, P. Emma
    SLAC, Menlo Park, California
  • R.A. Bosch, K.J. Kleman
    UW-Madison/SRC, Madison, Wisconsin

Funding: The work of PE and JW was supported by the US Department of Energy under contract DE-AC02-76SF00515. The work of RAB and KJK was supported by National Science Foundation Award No. DMR-0537588.
For electron bunches driving a hard X-ray free electron laser, the electron bunch high qualities should be preserved as well as possible in the acceleration and compression. For typical configuration, the electron bunch is accelerated in rf cavity and compressed in magnetic chicane. Besides the rf curvature and high-order optics terms in a chicane, the collective effects during the bunch acceleration, transportation, and compression can further distort the phase space and even lead to instability. Among these collective effects, the coherent edge radiation dominates and governs the overall bunch property; while the longitudinal space charge is the main cause for microbunching instability. Random jitter couples to the wakefields and affect the final bunch properties. We study these effects and discuss their implication to general linac design and optimization.