A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ishibashi, T.

Paper Title Page
MOP039 Design of a 2-Beam Type IH-RFQ Linac for High Intense Heavy Ion Beam Accelerations in Low Energy Region 154
  • T. Ishibashi, T. Hattori, N. Hayashizaki
    RLNR, Tokyo

In order to obtain high intensity ion beams from a linear accelerator (linac) stably, it is necessary to suppress the defocusing force due to the space charge effect. The defocusing force is extremely strong in low energy and high intensity beams. Therefore, high intensity ion beam acceleration in the low energy region is one of the most difficult conditions to achieve. One of the solutions is the relaxation of the defocusing force by dividing the high intensity beam into several beams. Thus, a multibeam IH type Radio Frequency Quadrupole (IH-RFQ) linac has been proposed for a high intensity injector system. In particular, we have been developing a two-beam type IH-RFQ cavity as a prototype of the multibeam type IH-RFQ by using computer code. This prototype has the capability of accelerating charged particles to mass ratio (q/A) greater than 1/6 from 5 keV/u up to 60 keV/u. The expected total output current is 87.2 mA for the total input beam current of 120 mA.

MOP059 C6+ Ion Hybrid Single Cavity Linac with Direct Plasma Injection Scheme for Cancer Therapy 211
  • T. Hattori, N. Hayashizaki, T. Ishibashi, T. Ito, R. Kobori, L. Lu
    RLNR, Tokyo
  • D. Hollanda, L. Kenez
    U. Sapientia, Targu Mures
  • M. Okamura
    BNL, Upton, Long Island, New York
  • J. Tamura
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama

We succeeded to accelerate very intense carbon ions with the Direct Plasma Injection Scheme (DPIS) using Laser ion source in 2001 and 2004. The peak current reached more than 60 mA of C4+ and 18 mA of C6+ with pulse width of 2-3 x 10-6 sec. We believe that these techniques are quite effective for pulse accelerator complexes such as linear accelerator and synchrotron (heavy-ion cancer therapy). In heavy cancer therapy, carbon stripper section is rejected by accelerated C6+. One turn injection of high intensity (6 mA) C6+ ion is possible to enough in synchrotron. We study a new hybrid single cavity linac combined with radio frequency quadrupole (RFQ) electrodes and drift tube(DT) electrodes into a single cavity. The hybrid linac is able to downsize the linac system and reduce the peripheral device. Using DPIS with Laser ion source, we study POP hybrid single-cavity accelerator of C6+ for injector linac of C cancer therapy. The linac is designed to accelerate 6 mA C6+ ion from 40 keV/u to 2 MeV/u with YAG Laser ion source. We will present the design procedures of this hybrid linac, which is based on a three-dimensional electromagnetic field and particle orbit calculation.