A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Clemente, G.

Paper Title Page
MOP001 A Coupled RFQ-Drift Tube Combination for FRANZ 46
 
  • A. Bechtold, U. Bartz, M. Heilmann, P. Kolb, H. Liebermann, O. Meusel, D. Mäder, H. Podlech, U. Ratzinger, A. Schempp, C. Zhang
    IAP, Frankfurt am Main
  • G. Clemente
    GSI, Darmstadt
 
 

Funding: Work supported by BMBF
The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum will comprise a short 175 MHz linac sequence consisting of a 1.4 m long 700 keV 4-rod type RFQ followed by a 50 cm IH-DTL for proton acceleration up to 2 MeV. The beam current is 200 mA at pulsed and 30 mA at cw operation. The aim is to have a very compact device driven by only one rf amplifier to reduce costs and required installation space. A coupling between the RFQ and the IH resonators by means of a galvanic connection is foreseen, which is realized by two brackets going right away through a common partitioning end flange lid. The accelerators could also be driven separately by just removing the brackets. The distance between the end of the RFQ electrodes and the middle of the first DTL gap is only 5 cm, there is no additional beam optics in between. Preliminary beam dynamics and rf simulations have been carried out together with accompanying measurements on rf models.

 
MOP075 Benchmarking of Measurement and Simulation of Transverse RMS-Emittance Growth Along an Alvarez DTL 251
 
  • L. Groening, W. Barth, W.B. Bayer, G. Clemente, L.A. Dahl, P. Forck, P. Gerhard, I. Hofmann, G.A. Riehl, S. Yaramyshev
    GSI, Darmstadt
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • D. Uriot
    CEA, Gif-sur-Yvette
 
 

Funding: CARE, contract number RII3-CT-2003-506395) European Community INTAS Project Ref. no. 06-1000012-8782
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriate tools to simulate the beam dynamics are indispensable. This paper is on benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittance growth for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the mean value of final horizontal and vertical rms-emittances can be reproduced well by the codes.