A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Beard, C.D.

Paper Title Page
TUP041 Superconducting Options for the UK's New Light Source Project 486
 
  • P.A. McIntosh, R. Bate, C.D. Beard, D.M. Dykes, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The UK's new light source project was officially launched on April 11th 2007, which will be based on advanced conventional and free electron lasers, with unique and world leading capabilities. User consulation exercises have already been initiated to determine the fundamental photon output requirements for such a machine. In order to match a nominal requirement for high repetition rates (extending up to 1 MHz), a series of superconducting rf (SRF) linac options have been investigated, reflecting varied beam loading conditions and subsequent high and low power rf solutions.

 
TUP042 High Repetition Rate Electron Injectors for FEL Based Next Generation Light Sources 489
 
  • B.L. Militsyn, C.D. Beard, J.W. McKenzie
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

Several laboratories concentrate their efforts on development of high repetition rate FEL based next generation light sources. One particular concept under development at STFC Daresbury Laboratory specifies high brightness electron bunches with a charge of 0.2-1 nC which arrive with a frequency up to 1 MHz. As emittance of the bunches should not exceed 1 um, traditional high repetition rate thermionic injectors, similar to the ones used at high micropulse repetition rate FELs like ELBE or FELIX, may not be used. We consider three options of high repetition rate injectors based on photocathode guns - a high voltage dc gun, a one and half cell superconducting rf gun and a normal conducting VHF gun, recently proposed at LBNL. We consider practical injector schemes for all three guns and provide the results of beam dynamic simulations. We also discuss the photocathodes which may be used in each gun, as this critical component defines achievable beam parameters and operational efficiency of the injectors.

 
THP023 Crab Cavities for Linear Colliders 830
 
  • G. Burt, P.K. Ambattu, R.G. Carter, A.C. Dexter, M.I. Tahir
    Cockcroft Institute, Lancaster University, Lancaster
  • C. Adolphsen, Z. Li, A. Seryi, L. Xiao
    SLAC, Menlo Park, California
  • C.D. Beard, D.M. Dykes, P. Goudket, A. Kalinin, L. Ma, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. Bellantoni, B. Chase, M. Church, T.N. Khabiboulline
    Fermilab, Batavia
  • R.M. Jones
    UMAN, Manchester
  • A. Latina, D. Schulte
    CERN, Geneva
 
 

Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favours a 3.9 GHz superconducting, multi-cell cavity as the ILC solution, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are special issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.