A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Baartman, R.A.

Paper Title Page
MOP011 An 8 GeV CW Linac With High Potential Beam Power 76
 
  • M. Popovic, C.M. Ankenbrandt, A. Moretti, S. Nagaitsev, T.J. Peterson, G.V. Romanov, N. Solyak, V.P. Yakovlev, K. Yonehara
    Fermilab, Batavia
  • R.A. Baartman
    TRIUMF, Vancouver
  • I.B. Enchevich, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
  • R.A. Rimmer
    JLAB, Newport News, Virginia
 
 

Modern technology allows us to consider operating an 8 GeV Linac in a cw mode to accelerate a high-current H- beam. By using appropriate accumulation rings, the linac could provide simultaneous beams for direct neutrino production, neutrino factories, fixed target experiments, and muon colliders. Several other unique accelerator applications could also be served and improved by the same continuous beam, including studies of energy production and nuclear waste reduction by transmutation, rare muon decay searches, and muon catalyzed fusion. The trade-offs between cw operation compared to pulsed operation that are considered include the maximum rf gradient and corresponding linac length or energy, the rf frequency, rf peak power and coupler requirements, and refrigeration. Methods for accumulating the beam from a cw linac to serve the special needs of the potential future Fermilab programs mentioned above are considered. In this paper we also examine the use of a cyclotron as a source of high current beams to reduce the cost and complexity of the linac front end.

 
MOP017 The Proposed ISAC-III (ARIEL) Low-Energy Area and Accelerator Upgrades 94
 
  • R.E. Laxdal, F. Ames, R.A. Baartman, M. Marchetto, M. Trinczek, F. Yan, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-III proposal is a ten year plan to triple the amount of radioactive ion beam (RIB) time at the facility. The plan includes the addition of two new independent target stations with a design suitable for actinide target materials, a second 500 MeV proton beam line from the TRIUMF cyclotron and a new 50 MeV electron linac as a complementary driver to provide RIBs through photo-fission. The two new target stations will require a new mass-separator and low-energy beam-transport complex to deliver the additional beams to the ISAC experimental facilities. It is also proposed to install a new linear accelerator section to provide the capability for two simultaneous accelerated RIBs to experimenters. This paper will describe the proposed installations in the low-energy transport and accelerator sections of the ISAC complex.

 
TUP002 ARIEL and the TRIUMF E-Linac Initiative, a 0.5 MW Electron Linac for Rare Isotope Beam Production 383
 
  • S.R. Koscielniak, F. Ames, R.A. Baartman, I.V. Bylinskii, R.J. Dawson, J.T. Drozdoff, K. Fong, A. Hurst, R. Keitel, R.E. Laxdal, F. Mammarella, M. Marchetto, L. Merminga, A.K. Mitra, K.W. Reiniger, T.C. Ries, R. Ruegg, I. Sekachev, G.M. Stinson, V.A. Verzilov
    TRIUMF, Vancouver
  • D. Karlen
    Victoria University, Victoria, B.C.
 
 

TRIUMF, in collaboration with university partners, proposes to construct a megawatt-class electron linear accelerator (e-linac) as a driver for U(γ,f) of actinide targets for nuclear astrophysics studies, and 9Be(γ,p)8Li for beta-NMR materials science. The e-linac is part of a broader proposal for an expansion of the TRIUMF rare isotope beams capability through a new facility to be named ARIEL. The e-linac design and prospects for funding are elaborated.