Author: Zobov, M.
Paper Title Page
MOPWA049 Simulation of Crab Waist Collisions in DAΦNE with KLOE-2 Interaction Region 229
 
  • M. Zobov, A. Drago, A. Gallo, C. Milardi
    INFN/LNF, Frascati (Roma), Italy
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Research supported by DOE via the US-LARP program and by EU FP7 HiLumi LHC - Grant Agreement 284404.
After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DAΦNE has started routine operations for the KLOE-2 detector. The new interaction region also exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets. We have performed simulations of the beam-beam collisions in the collider taking into account the real DAΦNE nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the DAΦNE dynamical aperture and energy acceptance, and estimated the luminosity that can be potentially achieved with and without crab waist sextupoles in the present working conditions. A numerical analysis has been performed in order to propose possible steps for further luminosity increase in DAΦNE such as a better working point choice, crab sextupole strength optimization, correction of the phase advance between the sextupoles and the interaction region. The proposed change of the e- ring working point was implemented and resulted in a significant performance increase.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA022 Numerical Analysis of Parasitic Crossing Compensation with Wires in DAΦNE 589
 
  • A. Valishev
    Fermilab, Batavia, Illinois, USA
  • C. Milardi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: This work was partially supported by the US LARP. The HiLumi LHC Design Study is partially funded by the European Commission Grant Agreement 284404.
Current bearing wire compensators were successfully used in the 2005-2006 running of the DAΦNE collider to mitigate the detrimental effects of parasitic beam-beam interactions. A marked improvement of the positron beam lifetime was observed in machine operation with the KLOE detector. In view of the possible application of wire beam-beam compensators for the High Luminosity LHC upgrade, we revisit the DAΦNE experiments. We use an improved model of the accelerator with the goal to validate the modern simulation tools and provide valuable input for the LHC upgrade project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA055 DAΦNE Gamma-Ray Factory 1542
 
  • D. Alesini, S. Guiducci, C. Milardi, A. Variola, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • I. Chaikovska, Z.F. Zomer
    LAL, Orsay, France
 
  Gamma sources with high flux and spectral densities are the main requirements for new nuclear physics experiments to be performed in several worldwide laboratories with dedicated facilities. The presentation is focalized on a proposal of experiment of gamma photons production using Compton collisions between the DAΦNE electron beam and a high average power laser pulse, amplified in a Fabry-Pérot optical resonator. The calculations show that the resulting gamma beam source has extremely interesting properties in terms of spectral density, energy spread and gamma flux comparable (and even better) with the last generation gamma sources. The energy of the gamma beam depends on the adopted laser wavelength and can be tuned changing the energy of the electron ring. In particular we have analyzed the case of a gamma factory tunable in the 2-9 MeV range. The main parameters of this new facility are presented and the perturbation on the transverse and longitudinal electron beam dynamics is discussed. A preliminary accelerator layout to allow experiments with the gamma beam is presented with a first design of the accelerator optics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY051 Injection Protection Upgrade for the HL-LHC 2136
 
  • J.A. Uythoven, N. Biancacci, C. Bracco, L. Gentini, B. Goddard, A. Lechner, F.L. Maciariello, A. Perillo Marcone, B. Salvant, N.V. Shetty, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
  • O. Frasciello, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN047 Suppression of Higher Order Modes in an Array of Cavities Using Waveguides 3033
 
  • Ya.V. Shashkov, N.P. Sobenin
    MEPhI, Moscow, Russia
  • M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work is supported by Ministry of Education and Science grant 3.245.2014/r и and by the EU FP7 HiLumi LHC - Grant Agreement 284404
In the frameworks of the High Luminosity LHC upgrade program an application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussion. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between “warm” and “cold” parts of the collider vacuum chamber. Unfortunately it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. In this paper we describe the results obtained for arrays of 2, 4 and 8 cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)