Author: Zhentang, Z.T.
Paper Title Page
TUPJE018 On-axis Injection Scheme for Ultimate Storage Ring with Double RF Systems 1657
 
  • B.C. Jiang, S.Q. Tian, M.Z. Zhang, Q.L. Zhang, Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  An on-axis injection scheme using double RF systems for an ultimate storage ring which holds very small dynamic aperture is proposed. By altering RF voltages, empty RF buckets can be created which will be used for on-axis injection. After bunches are injected, a reverse voltage altering process is performed and the injected bunches can be longitudinally dumped to the main buckets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBD2 Survey of Commissioning of Recent Storage Ring Light Sources 2482
 
  • M. Borland
    ANL, Argonne, Ilinois, USA
  • R. Bartolini, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Kuske, R. Müller
    HZB, Berlin, Germany
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J.A. Safranek
    SLAC, Menlo Park, California, USA
  • S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
  • Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source and other existing storage ring light sources are contemplating replacing an existing, operating storage ring with a multi-bend achromat lattice. One issue is that existing light sources have large user communities who are greatly inconvenienced by extended shutdowns. Hence, there will be a premium placed on rapid commissioning of the new lattice. To better understand the possibilities, we undertook a survey of recent commissioning experience at third-generation light sources. We present a summary of that survey here.
 
slides icon Slides WEBD2 [0.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)