

Survey of Commissioning of Recent Storage Ring Light Sources

M. Borland (ANL)

- R. Bartolini, Ian Martin (DLS)
- L. Dallin (CLS)
- F. Perez (CELLS-ALBA)
- P. Kuske, R. Müller (HZB, Berlin)
- L. Nadolski (SOLEIL)
- J. Safranek (SLAC)
- S. Shin (PAL)
- Z. Zhao (SINAP)

Outline

- Motivation
- Survey questions and responses
- Conclusions

Motivation

- APS and other facilities are contemplating replacing operating rings
- Users and funding agencies insist that "dark time" is minimized
 - E.g., APS is targeting 12 months for removal, installation, and commissioning
 - <u>3 months set aside for commissioning</u>
- We want to determine
 - How realistic is this?
 - What factors are most likely to prevent this?
 - What steps can be taken to ensure rapid commissioning?
- Toward this end, we surveyed recently-commissioned light sources to understand their experience
 - "Recently-commissioned" was defined as within the last 10-15 years
 - NSLS-II and TPS not included (not commissioned at the time)
- Survey questions created M. Borland, L. Emery, J. Kerby, and A. Zholents
 - Questions are paraphrased below in the interest of brevity

Question 1: Names of facilities and respondents

- ALBA: F. Perez
 Began operation in 2012
- BESSY-II: A. Jankowiak, P. Kuske, R. Müller Began operation in 1998
- CLS*: M. de Jong, L. Dallin Began operation in 2004
- DLS: R. Bartolini, I. Martin Began operation in 2007
- PLS-II: S. Shin
 Began operation in 2012
- SOLEIL: L. Nadolski
 Began operation in 2007
- SSRF: Z. Zhao
 Began operation in 2009
- SPEAR3: J. Safranek
 Began operation in 2004

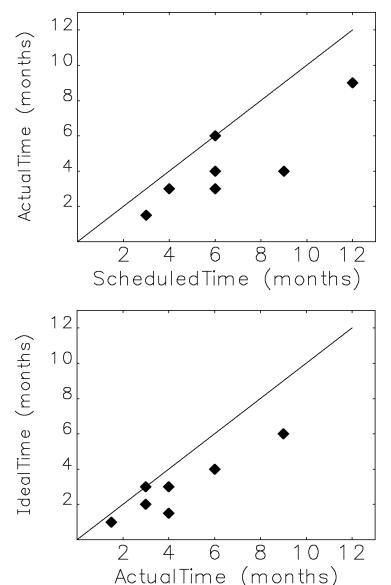
7 out of the 8 of the machines for which responses were received were commissioned in the last 10 years

*Didn't address questionnaire directly but provided related Information.

Question 2: What does "commissioning" mean?

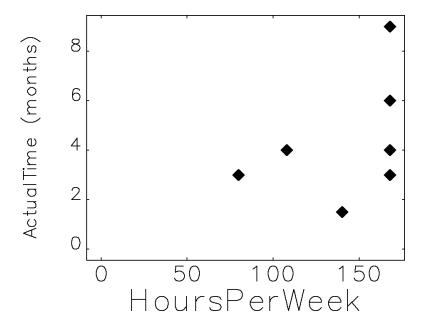
- It is hard to make a universal definition, but we tried
- Suggested definition:
 - Begins when beam is first injected into the ring
 - Ends when ring is capable of supporting meaningful beamline commissioning, which generally requires
 - Ring can routinely store a significant fraction of the planned initial operating current for periods of 8 hours or more
 - Lattice and emittance are essentially at initial design configuration/values
 - Lifetime is workable
 - Orbit and stability are workable
 - One or more ready-to-use insertion devices
- Respondents generally agreed on this definition
 - In some cases, beam delivery to friendly users was the endpoint

Q3: How was the commissioning schedule developed?

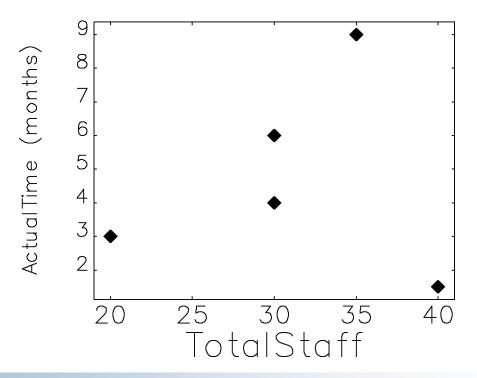

- Question was intended to ask about the process for developing the commissioning schedule, but wasn't very clear and was misunderstood by several respondents
- Common themes in answers:
 - Based on experience at other facilities
 - E.g., PLS-II followed the SPEAR3 example of 6 month replacement followed by 6 month commissioning
 - Based on requirements set by user community
 - Extensive discussions among commissioning team
 - Creation of a list of major milestones
 - Definition of a phased commissioning approach

Q4a: What was the scheduled duration of commissioning and how was it structured?

- Scheduled duration ranged between 4 and 12 months
 - 1/7 gave 3 months
 - 4/7 gave 6 months
 - 1/7 gave 9 months
 - 1/7 gave 12 months
- In terms of planning, at least, a 3 month commissioning period is a factor of two shorter than typically contemplated


Q4b: How much time would ideally have been required and how much was actually required?

- Actual time
 - All but one facility completed commissioning in less than the scheduled time
 - Five of the seven responding facilities reported commissioning in 4 months or less
 - The median ratio of actual to scheduled time is 2/3
 - No correlation between year of start and actual time
- Ideal time
 - All but one facility reported that some delays occurred that increased the time above the ideal duration
 - The median increase over the ideal time is 50%
 - Five of seven responding facilities thought commissioning could be done in 3 months or less


Q5: What was the shift schedule? If not 24/7, why not?

- Mostly 24/7, but with interruptions for repairs/installation in some cases
- No obvious relationship between hours of shift work per week and time required for commissioning
 - Probably swamped by other effects

Q6: Personnel involved in commissioning

- By type
 - Physicists: between 6 and 18, median of 7
 - Operators: between 5 and 7, median of 5
 - Total: between 15 and 50, median of 30
- Data weakly suggests that more people means slower commissioning
 - Responses are incomplete and hard to compare
 - Perhaps more people become involved when difficulties are encountered

Q7: Which factors introduced the largest delays?

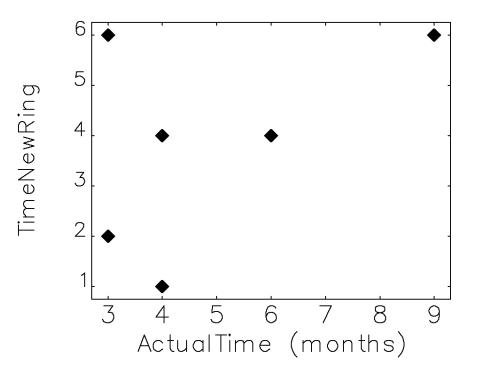
- Vacuum obstruction (4)
- Delivery delays (2)
- Vacuum chamber heating (2)
- Need to understand detailed behavior of hardware (2)
- Vacuum leak (1)
- Machine protection system delayed (1)
- Magnet wiring error (1)
- Operating procedure error (1)
- Catastrophic failure of a unique component (1)
- Inadequate simulation of start-up method (1)
- Lessons:
 - Vacuum system problems are common, good to test components (e.g., bellows liners) on existing accelerator when possible
 - Commissioning interleaved with installation introduces delays

Q8: Which factors advanced commissioning most rapidly?

- Thorough subsystem commissioning (8)
- Control system ready and tested (5)
 - MML/AT (3)
 - Model-based tools (2)
- First-turn BPMs (2)
- Planning for failures and problems (1)
- Robust rf bellows (1)
- Sending staff to commission other rings, to gain experience (1)

- Lessons:
 - Test hardware carefully ahead of time before introducing beam
 - Use well-tested software

Q9: For new ring in next 5-10 years, what are essential factors for rapid progess?


- Working, well-understood diagnostics (5)
 - Turn-by-turn BPMs (3)
- Thorough subsystem commissioning (4)
- Control system applications ready (3)
 - MML (2)
 - LOCO (1)
 - Data logging (1)
- Well trained, experienced staff (2)
- Robust lattice design (1)
- Technical documentation (1)
- Reliable magnet measurements (1)
- Lessons
 - Some evidence of frustration with technical system readiness, BPMs in particular
 - Control system readiness is very important

Q10: For new ring in next 5-10 years, what factors are most likely to introduce delays?

- Obtaining stored beam with small DA/PA (4)
- Obtaining sufficient stored beam to perform corrections (3)
- Lack of full subsystem commissioning (2)
- Vacuum components (2)
 - Rf bellows (1)
 - Impedance (1)
- Late delivery of components (1)
- Control system not ready or not tested (1)
- Unforeseen major failures (1)
- Aged staff (1)
- Lessons:
 - Physicists worry about physics-related issues
 - Subsystem commissioning and vacuum issues are understandable worries

Q11: If commissioning a new ring in the next 5-10 years, what's your best estimate of the minimum time required?

- Median estimate: 4 months
 - Corresponds to the median time to commission rings in survey
- Weak correlation between estimate for new ring and time taken with existing rings

Summary of Key Lessons

- 7 facilities responded to survey with item-by-item responses
 - Information also provided by CLS
- Most recent rings commissioned in 4 months or less
 - Typically took only 2/3 of the scheduled time
- Most respondents estimated new ring would take the same
 - Existing rings could have commissioned in ~2/3 the time if problems had been avoided (i.e., less than 3 months)
- Keys to success include
 - Thorough subsystem commissioning without beam
 - Controls software tested ahead of time
- Delays commissioning new rings most likely to be
 - Difficulty of getting (sufficient) stored beam in new lattices
 - Lack of full subsystem commissioning
 - Vacuum system issues (heating, obstructions)
 - Delivery delays
- Commissioning an upgrade in 3 months seems within the realm of possibility