Author: Wing, M.
Paper Title Page
WEPWA045 Development of a Spectrometer for Proton Driven Plasma Wakefield Accelerated Electrons at AWAKE 2601
 
  • L.C. Deacon, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • B. Biskup
    Czech Technical University, Prague 6, Czech Republic
  • B. Biskup, E. Bravin, A.V. Petrenko
    CERN, Geneva, Switzerland
  • M. Wing
    DESY, Hamburg, Germany
  • M. Wing
    University of Hamburg, Hamburg, Germany
 
  The AWAKE experiment is to be constructed at the CERN Neutrinos to Gran Sasso facility (CNGS). This will be the first experiment to demonstrate proton-driven plasma wakefield acceleration. The 400 GeV proton beam from the CERN SPS will excite a wakefield in a plasma cell several metres in length. To observe the plasma wakefield, electrons of 10–20 MeV will be injected into the wakefield following the head of the proton beam. Simulations indicate that electrons will be accelerated to GeV energies by the plasma wakefield. The AWAKE spectrometer is intended to measure both the peak energy and energy spread of these accelerated electrons. Improvements to the baseline design are presented, with an alternative dipole magnet and quadrupole focussing, with the resulting energy resolution calculated for various scenarios. The signal to background ratio due to the interaction of the SPS protons with upstream beam line components is calculated, and CCD camera location, shielding and light transport are considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)