Author: Willeke, F.J.
Paper Title Page
MOYGB3 Commissioning of NSLS-II 11
 
  • F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  NSLS-II, the new 3rd generation light source at BNL was designed for a brightness of 1022 photons s-1 mm-2 mrad-2 (0.1%BW)-1. It was constructed between 2009 and 2014. The storage ring was commissioned in April 2014 which was followed by insertion device and beamline commissioning in the fall of 2014. All ambitious design parameters of the facility have already been achieved except for commissioning the full beam intensity of 500 mA which requires more RF installation. This paper reports on the results of commissioning.  
slides icon Slides MOYGB3 [3.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOYGB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAB2 First Collective Effects Measurements in NSLS-II with ID's 1332
 
  • A. Blednykh, B. Bacha, G. Bassi, W.X. Cheng, J. Choi, Y. Hidaka, Y. Li, B. Podobedov, T.V. Shaftan, V. Smalyuk, T. Tanabe, G.M. Wang, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886.
As another important milestone towards the final goal to store an average current of 500mA, the average current of 200mA, distributed within ~1000 bunches, was recently achieved in the NSLS-II storage ring after the installation of three Damping Wigglers and four In-Vacuum Undulators. First measurements of the collective effects and instability thresholds, both in single- and multi-bunch mode, are discussed.
 
slides icon Slides TUAB2 [2.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA050 NSLS-II Injector Commissioning and Initial Operation 1944
 
  • E.B. Blum, B. Bacha, G. Bassi, J. Bengtsson, A. Blednykh, S. Buda, W.X. Cheng, J. Choi, J. Cupolo, R. D'Alsace, M.A. Davidsaver, J.H. De Long, L. Doom, D.J. Durfee, R.P. Fliller, M. Fulkerson, G. Ganetis, F. Gao, C. Gardner, W. Guo, R. Heese, Y. Hidaka, Y. Hu, M.P. Johanson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, S. Krinsky, Y. Li, W. Louie, M.A. Maggipinto, P. Marino, J. Mead, J. Oliva, D. Padrazo, K. Pedersen, B. Podobedov, R.S. Rainer, J. Rose, M. Santana, S. Seletskiy, T.V. Shaftan, O. Singh, P. Singh, V.V. Smaluk, R.M. Smith, T. Summers, J. Tagger, Y. Tian, W.H. Wahl, G.M. Wang, G.J. Weiner, F.J. Willeke, L. Yang, X. Yang, E. Zeitler, E. Zitvogel, P. Zuhoski
    BNL, Upton, Long Island, New York, USA
  • A. Akimov, P.B. Cheblakov, I.N. Churkin, A.A. Derbenev, S.M. Gurov, S.E. Karnaev, V.A. Kiselev, A.A. Korepanov, E.B. Levichev, S.V. Sinyatkin, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The injector for the National Synchrotron Light Source II storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC this has proven to be more than sufficient for storage ring commissioning. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of injector operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA053 Experience with First Turns Commissioning in NSLS-II Storage Ring 1950
 
  • S. Seletskiy, G. Bassi, J. Bengtsson, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, R.P. Fliller, W. Guo, R. Heese, Y. Hidaka, S.L. Kramer, Y. Li, B. Podobedov, T.V. Shaftan, G.M. Wang, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  In this paper we describe our experience with commissioning of the first turns in the NSLS-II storage ring. We discuss the problems that we encountered and show how applying a dedicated first turns commissioning software allowed us to diagnose and resolve these problems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA055 Analysis of Possible Beam Losses in the NSLS II Storage Ring 1956
 
  • S. Seletskiy, R.P. Fliller, W. Guo, S.L. Kramer, Y. Li, B. Podobedov, T.V. Shaftan, W.H. Wahl, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II accelerators are installed within radiation shielding walls that are designed to attenuate the radiation generated from an assumed beam loss power to a level of <0.5mrem/h at the outer surface of the bulk shield walls. Any operational losses greater than specified level are expected to be addressed by installing supplemental shielding near the loss point in order to attenuate the radiation outside the shield wall to the design level. In this paper we report the analysis of the electron beam mis-steering in the NSLS-II storage ring for the determination of supplementary shielding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA056 Analysis of Possible Beam Losses in the NSLS II BSR Transfer Line 1959
 
  • S. Seletskiy, R.P. Fliller, W. Guo, S.L. Kramer, Y. Li, B. Podobedov, T.V. Shaftan, W.H. Wahl, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II accelerators are installed within 0.8 – 1 m thick radiation shielding walls. The safety considerations require attenuating the radiation generated from possible electron beam losses to a level of <0.5mrem/h at the outer surface of the bulk shield walls. Any operational losses greater than specified level shall be addressed by installing supplemental shielding near the loss point. In this paper we discuss simulation studies that identified potential beam loss locations. Results of these studies were used for identification of imposed radiation risks and for specification of the supplemental shielding design necessary to mitigate those risks.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA057 Commissioning of Active Interlock System for NSLS II Storage Ring 1962
 
  • S. Seletskiy, C. Amundsen, J. Choi, J.H. De Long, K.M. Ha, C. Hetzel, H.-C. Hseuh, Y. Hu, P. Ilinski, S.L. Kramer, Y. Li, M.A. Maggipinto, J. Mead, D. Padrazo, T.V. Shaftan, G. Shen, O. Singh, R.M. Smith, W.H. Wahl, G.M. Wang, F.J. Willeke, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope. In this paper we describe functional details of the AIS and discuss our experience with commissioning of the AIS for the first six IDs installed in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA005 Tools for NSLS II Commissioning 1971
 
  • G.M. Wang, G. Bassi, A. Blednykh, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo, S. Seletskiy, T.V. Shaftan, G. Shen, K. Shroff, O. Singh, T. Summers, Y. Tian, F.J. Willeke, H. Xu, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As many facilities worldwide, NSLS II uses the EPICS control system to monitor and control all accelerator hardware. Control system studio (CSS) is used for simple tasks such as monitoring, display, setting of PVs. browsing the historical data, et. al. For more complex accelerator physics applications, a collection of scripts are mainly written in Python and part from Matlab during commissioning. With the close collaboration and fully support from control group, more and more CSS features were developed for operation convenience and several high level applications are interfaced with users in CSS panels for daily use based on softiocs. This paper will present the tools that we have been using for commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA006 NSLS-II Storage Ring Insertion Device and Front-End Commissioning 1974
 
  • G.M. Wang, C. Amundsen, G. Bassi, J. Bengtsson, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, O.V. Chubar, T.M. Corwin, M.A. Davidsaver, L. Doom, W. Guo, D.A. Harder, P. He, Y. Hidaka, Y. Hu, P. Ilinski, C.A. Kitegi, S.L. Kramer, Y. Li, M. Musardo, D. Padrazo, B. Podobedov, K. Qian, R.S. Rainer, J. Rank, S. Seletskiy, T.V. Shaftan, S.K. Sharma, O. Singh, V. Smalyuk, R.M. Smith, T. Summers, T. Tanabe, F.J. Willeke, L. Yang, X. Yang, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. In the spring 2014, the storage ring was commissioning up to 50 mA without insertion device. In the fall, the project beamlines, includes seven insertion devices on six ID ports were commissioned within two and a half months. These beamlines consist of IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1, from the radiation sources elliptically polarizing undulator (EPU), damping wiggler (DW) and in vacuum undulator (IVU) to cover the VUV through the very hard x-ray range. In this paper, a number of commissioning and operation experiences are discussed here, such as injection, lifetime, ID residual field and compensation, source point stability, beam alignment and tools for control, monitor and beam protection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA007 NSLS II Booster Extended Integration Test 1977
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, W. Guo, K. Ha, Y. Hu, W. Louie, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.E. Karnaev, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. While the installation activities in the booster-synchrotron are nearly completed and waiting for the authorization to start the booster commissioning, the injector and accelerator physics group have engaged into the Integrated Testing phase. We did the booster commissioning with simulated beam signals, called extended integrated testing (EIT) to prepare for the booster ring commissioning. It is to make sure the device function along with utilities, timing system and control system, to calibrate diagnostics system, debug High Level Applications, test and optimize all the operation screens to reduce the potential problems during booster commissioning with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)