Author: Webb, S.D.
Paper Title Page
MOPMA028 Chromaticity and Dispersion in Nonlinear Integrable Optics 608
 
  • S.D. Webb, D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work sup- ported by the U.S. Department of Energy, Office of Sci- ence, Office of High Energy Physics under Award Num- ber DE-SC0011340.
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity- driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker and fewer correcting magnet families are required, thus minimizing the impact on dynamic aperture.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA029 Experiences Simulating Nonlinear Integrable Optics 611
 
  • S.D. Webb, D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • R.A. Kishek
    UMD, College Park, Maryland, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0011340.
With increasing interest in the nonlinear integrable optics, it is important that early experiences with simulating the lattices be shared to save time and point out potential difficulties in the simulations. We present here some details of simulating the nonlinear integrable lattices. We discuss correctly implementing and testing the elliptic element kicks, and the limits of the thin lens approximation. We also discuss generating a properly matched bunch in the transverse phase space, and how to analyze the resulting computational data from simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA030 Multisymplectic Integrators for Accelerator Tracking Codes 614
 
  • S.D. Webb, D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
 
  It has been long understood that long time single particle tracking requires symplectic integrators to keep the simulations stable. In contrast, space charge has been added to tracking codes without much regard for this. Indeed, multisymplectic integrators are a promising new field which may lead to more stable and accurate simulations of intense beams. We present here the basic concept, through a spectral electrostatic field solve which is suitable for adapting into existing tracking codes. We also discuss the limitations of current algorithms, and suggest directions for future development for the next generations of high intensity accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMN009 Cross-platform and Cloud-based Access to Multiple Particle Accelerator Codes via Application Containers 720
 
  • D.L. Bruhwiler, G. Andonian, M.A. Harrison, S. Seung
    RadiaBeam, Santa Monica, California, USA
  • D.L. Bruhwiler, R. Nagler, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • P. Moeller
    Bivio Software Inc., Boulder, USA
  • T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0006284.
Particle accelerator and radiation modeling codes focus on specific problems, rely on complicated command-line interfaces, are sometimes limited to a small number of computing platforms, and can be difficult to install. There is also a growing need to use two or more codes together for end-to-end design or for complicated sub-systems. RadTrack is a lightweight cross-platform GUI for such codes, based on the Qt framework and PyQt bindings for Python. RadTrack is designed to support multiple codes, placing no burden on the corresponding development teams. Elegant and the Synchrotron Radiation Workshop (SRW) are supported now in a pre-beta stage, and support for GENESIS 1.3 is under development. These codes are being containerized via the open source Docker platform for use in the cloud. The open source Vagrant and Virtual Box are used for MacOS and Windows. We discuss RadTrack and our vision for cloud computing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)