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Abstract

It has been long understood that long time single particle

tracking requires symplectic integrators to keep the simu-

lations stable. In contrast, space charge has been added to

tracking codes without much regard for this. Indeed, mul-

tisymplectic integrators are a promising new field which

may lead to more stable and accurate simulations of intense

beams. We present here the basic concept, through a spec-

tral electrostatic field solve which is suitable for adapting

into existing tracking codes. We also discuss the limita-

tions of current algorithms, and suggest directions for fu-

ture development for the next generations of high intensity

accelerators.

INTRODUCTION

Integrating single-particle orbits in storage rings using

symplectic integration has been a staple of the accelera-

tor field for decades1. The fundamental idea of symplectic

integrators is: if the continuous equations of motion derive

from an action principle, then so too should their discretiza-

tion.

Keeping in this idea, recent work in the plasma-based

accelerator field [2, 3] has expanded on early work [4, 5, 6]

generalizing the idea of symplectic integration to field the-

ories such as Maxwell’s equations. Conventional particle-

in-cell algorithms have discretized the particle motion and

field solvers individually, then used charge deposition and

force interpolation to enforce energy or momentum conser-

vation. The difficulty with this approach is that conserva-

tion laws are encoded in the action principle, and arise from

Noether’s Theorem. Thus, momentum or energy conserva-

tion should be a natural result of the discretization of the

continuum Lagrangian, not an ad hoc addition to impose

certain physical constraints.

These ideas have a clear application to studying beam

physics with intense space charge, or other dynamical ef-

fects over the long term. One can roughly understand non-

symplectic versus symplectic integrators as being similar

to secular versus canonical perturbation theory. In the sec-

ular theory, the expansion over a parameter ε is only valid

for small times, so that |εt| ≪ 1. Canonical perturbation

theory is valid for all time, so long as ε is small. As applied

to accelerators, this means that a non-symplectic integrator

will only give reliable results over time scales short com-

pared to the space-charge tune shift (for example). Thus, a
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1see, e.g., [1] for an overview of the history and literature of this topic.

non-symplectic space charge simulation is likely only reli-

able for n ∝ (∆QSC)
−1 turns, with additional scaling for

the step size such that n → ∞ as h → 0.

We here present the basic concepts of multisymplectic

integration using a Lagrangian approach. We discuss this

first schematically, then using a specific example – a spec-

tral electrostatic particle-in-cell algorithm. We conclude

with a discussion of future work required to implement

these ideas in accelerator tracking codes.

MULTISYMPLECTIC INTEGRATION

The current literature in the field deals primarily with

Lagrangians, as the plasma physics community generally

thinks in terms of the tangent space (position and veloc-

ity) rather than the cotangent space (coördinates and mo-

menta). However, the geometric structures (symplectic 2-

form, conserved momenta, etc.) have a clear translation be-

tween Lagrangian and Hamiltonian treatments, so the basic

principles will be the same.

The so-called Low Lagrangian [7] can be written gener-

ally as

L =

∫

dx0dv0

[

T

(
∂x

∂t
(x0, v0)

)

+ . . .

· · · − qϕ+
q

c

∂x

∂t
·A

]

f(x0, v0) + . . .

· · ·+ 1

16π

∫

dxFµνF
µν

(1)

where T is the kinetic energy term and Fµν = ∂µAν −
∂νAµ is the antisymmetric electromagnetic tensor. We note

that the conservation of phase space density implies that

f(x0, v0) = f(x, v, t). Variation with respect to the indi-

vidual vector potential components A, and the position x,

lead to the familiar Lorentz force law and Maxwell’s equa-

tions, assuming we are using the conventional coördinate

systems (Cartesian, cylindrical, spherical...). The specific

application for accelerator coördinates will diverge from

these familiar forms.

The first step in discretizing this Lagrangian is to dis-

cretize the spatial components of the fields. Thus, each

component of the 4-vector potential

A =
∑

σ

Ψσ(x)aσ(t) (2)

over some set of indices σ. These could be finite elements,

structured finite elements (which lead to finite difference

equations), Fourier decompositions, eigenmodes formula-

tions, or a variety of other possibilities. Similarly, we dis-
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cretize the phase space density

f(x, v, t) =
∑

i

wiΛ(x − xi(t))δ(v − vi(t)) (3)

where Λ is the spatial shape function and we assume every

macroparticle has a single velocity. w is the macroparticle

weight. Thus, we can view macroparticles as a finite ele-

ment Lagrangian flow picture of the phase space “fluid”.

These definitions create overlap integrals between the

individual Ψ and products of Ψ and Λ. The former dic-

tates the discretized form of the differential operators on

the fields, while the later determines charge deposition and

force interpolation. Discretization in time is an approxima-

tion of the action integral, described in greater detail in [8].

The discretization in time should be taken to be higher than

first order accurate, and can be easily done by considering

S =
∫
dtL in terms of Riemann sums over L. This gives

the discrete action which must be minimized with respect

to the individual coördinates and field components to give

the equations of motion.

To see these ideas in context, let us now consider a spe-

cific example.

SPECTRAL ELECTROSTATIC

ALGORITHM

Let us restrict ourselves to a nonrelativistic electrostatic

example, as this is the simplest nontrivial possibility. In

this case, the Low Lagrangian simplifies greatly to

L =

∫

dx0dv0

{[

1

2
m

(
∂x

∂t

)2

− qϕ(x)

]

f(x0, v0) + . . .

· · ·+ 1

8π

∫

dx (∇ϕ) · (∇ϕ)

}

.

(4)

We choose to discretize the fields using a spectral de-

composition

ϕ(x) =
1

√
2π

D

∑

σ

eikσ·xϕ̃σ (5)

This is the standard discrete Fourier transform, with index-

ing value(s) σ. We denote −σ in terms of the k-vectors

k−σ = −kσ and furthermore, from the reality of the scalar

potential, that ϕ−σ = ϕ∗

σ .

We can similarly decompose the phase space density as

f(x, v, t) =
∑

i

wiΛ(x − xi(t))δ(v − vi(t)) (6)

to obtain a spatially discretized Lagrangian:

LD =
∑

i

{
1

2
wim

(
∂xi

∂t

)2

︸ ︷︷ ︸

kinetic energy

− . . .

· · · − wiq
∑

σ

Λ̃(kσ)ϕ̃σe
−ikσ·xi

︸ ︷︷ ︸

deposition/interpolation

}

− 1

8π

∑

σ

|ϕ̃σ|2|kσ|2

︸ ︷︷ ︸

Poisson equation

(7)

where here Λ̃(k) is the Fourier transform of the particle

spatial shape function. We now discretize the action inte-

gral in time, by approximating S =
∫
dtLD as a Riemann

sum. As noted in [8], we can use multi-step integrators

and self-adjoint discretizations of the action integral to get

second-order integrators in time.

For the sake of brevity, we simply that the adjoint of a

discrete action S∗

D(qk+l, qk) = −SD(qk, qk+1), and that a

self-adjoint action must be even order accruate – thus by

constructing a self-adjoint approximation to the action in-

tegral in time, we are guaranteed at least a second order ac-

curate integrator. The details may be found in §2.4 of [8].

Doing this gives a discrete action for a single step by map-

ping x 7→ x
(n+1/2) and ∂tx 7→ (x(n+1/2) − x

(n))/h/2 to get

the self-adjoint action:

SD =
∑

i

{
1

2
wim

(
(x

(n+1)
i − x

(n+1/2)
i )2

h/2
+ . . .

· · ·+ (x
(n+1/2)
i − x

(n)
i )2

h/2

)

− . . .

· · · − wih
∑

σ

Λ̃(kσ)ϕ̃σe
−ikσ·x

(n+1/2)
i

}

− h

8π

∑

σ

|ϕ̃σ|2|kσ|2

(8)

Varying this using the discrete Euler-Lagrange equa-

tions for each of the electrostatic Fourier modes and the

coördinates2 to get the update sequence:

x
(n+1)
i − 2x

(n+1/2)
i + x

(n)
i

h
︸ ︷︷ ︸

v
(n+1)
i −v

(n)
i

= . . .

. . .
q

m
h
∑

σ

−ikσΛ(kσ)e
−ikσ·x

(n+1/2)
i ϕ̃σ

(9a)

ϕ̃σ = − 4πq

|kσ|2
∑

i

wiΛ̃(kσ)e
−ikσ·x

(n+1/2)
i (9b)

Using those definitions for the velocity intermediate vari-

able leads to a fairly standard leapfrog algorithm familiar

from traditional macroparticle methods. We can see al-

most directly that eqn. (9a) is a = −q∇ϕ and eqn. (9b)

is ∇2ϕ = 4πρ – Newton’s Second Law and the Poisson

equation.

We have thus constructed this algorithm using approx-

imations at the level of the action, guaranteeing that the

resulting integrator will satisfy a symplectic condition on

both the particles and the fields. Because we have used a

Fourier representation of the system, and because there are

2The paper by Marsden & West [8] is a more or less complete dictio-

nary for how to get from continuous to discrete Lagrangian mechanics.

There are analogous concepts to the Euler-Lagrange equations, a canon-

ical momentum, etc. Notably, there is no discrete analog of the velocity

– there are only the discrete coördinates. Thus, discrete Lagrangians lack

a tangent space, but a Hamiltonian can be derived which implies a cotan-

gent space. The “velocity” such as it is appears purely as a computational

convenience and plays no role in the symplectic structure of discrete La-

grangian mechanics.
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no external forces to break the symmetry, this algorithm

will also be “momentum conserving”, to use the parlance

of the computational plasma physics community.

CONCLUSION & OUTLOOK

We have thus presented a general picture of multisym-

plectic integration, and provided a first example of its

derivation for an electrostatic system. The algorithm pre-

sented is not completely suitable for accelerator applica-

tions, but the basic concept is applicable. The result is a

geometric integrator which preserves the symplectic struc-

ture of both the particles and the fields.

The path to extremely high intensity bunches, with space

charge dominated dynamics, in storage rings will require

reliable simulations over many turns with a self-consistent

treatment of the fields. Multisymplectic integrators are the

logical path forward for these simulations, as they extend

the now-commonplace practice of symplectic integration

of single particle orbits.

As noted above, non-symplectic space charge algorithms

have a limited range of validity before non-Hamiltonian

dynamics becomes apparent. For space charge dominated

beams, or other applications with long term tracking of col-

lective effects, the field solves will have to satisfy some

form of symplectic condition to obtain reliable results.

There are a number of key developments to mature these

ideas and make them suitable for storage ring tracking code

applications:

1. Adapt the Lagrangian treatment to a Hamiltonian for-

mulation compatible with a transfer map treatment of

the problem

2. Determine how wake functions and other Green’s

function type forces can appear alongside the self-

consistent fields

3. Develop a path to higher order algorithms similar to

the method in [9]

Substantial intellectual effort will be required to fully adapt

these algorithms in a suitable way for computational accel-

erator physics.
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