Author: Tian, Y.
Paper Title Page
TUPMA050 NSLS-II Injector Commissioning and Initial Operation 1944
 
  • E.B. Blum, B. Bacha, G. Bassi, J. Bengtsson, A. Blednykh, S. Buda, W.X. Cheng, J. Choi, J. Cupolo, R. D'Alsace, M.A. Davidsaver, J.H. De Long, L. Doom, D.J. Durfee, R.P. Fliller, M. Fulkerson, G. Ganetis, F. Gao, C. Gardner, W. Guo, R. Heese, Y. Hidaka, Y. Hu, M.P. Johanson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, S. Krinsky, Y. Li, W. Louie, M.A. Maggipinto, P. Marino, J. Mead, J. Oliva, D. Padrazo, K. Pedersen, B. Podobedov, R.S. Rainer, J. Rose, M. Santana, S. Seletskiy, T.V. Shaftan, O. Singh, P. Singh, V.V. Smaluk, R.M. Smith, T. Summers, J. Tagger, Y. Tian, W.H. Wahl, G.M. Wang, G.J. Weiner, F.J. Willeke, L. Yang, X. Yang, E. Zeitler, E. Zitvogel, P. Zuhoski
    BNL, Upton, Long Island, New York, USA
  • A. Akimov, P.B. Cheblakov, I.N. Churkin, A.A. Derbenev, S.M. Gurov, S.E. Karnaev, V.A. Kiselev, A.A. Korepanov, E.B. Levichev, S.V. Sinyatkin, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The injector for the National Synchrotron Light Source II storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC this has proven to be more than sufficient for storage ring commissioning. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of injector operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA004 NSLS-II Storage Ring Injection Optimization 1968
 
  • G.M. Wang, E.B. Blum, W.X. Cheng, J. Choi, Y. Li, S. Seletskiy, T.V. Shaftan, Y. Tian, L. Yang, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. The SR is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets with independent amplitude and timing control. The beam injection is designed as 9.5 mm off-axis in x plane and on-axis injection in y plane. To capture the injected beam within the SR acceptance for high injection efficiency, it requires 6-D phase space match. Besides that, the fast kickers formed local bump is also required to be locally to minimize the injected beam extra betatron oscillation and keep the stored beam disturbance within the specification, 10% beam size to minimize the injection transient. This paper will present the beam results before and after optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA005 Tools for NSLS II Commissioning 1971
 
  • G.M. Wang, G. Bassi, A. Blednykh, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo, S. Seletskiy, T.V. Shaftan, G. Shen, K. Shroff, O. Singh, T. Summers, Y. Tian, F.J. Willeke, H. Xu, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As many facilities worldwide, NSLS II uses the EPICS control system to monitor and control all accelerator hardware. Control system studio (CSS) is used for simple tasks such as monitoring, display, setting of PVs. browsing the historical data, et. al. For more complex accelerator physics applications, a collection of scripts are mainly written in Python and part from Matlab during commissioning. With the close collaboration and fully support from control group, more and more CSS features were developed for operation convenience and several high level applications are interfaced with users in CSS panels for daily use based on softiocs. This paper will present the tools that we have been using for commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA007 NSLS II Booster Extended Integration Test 1977
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, W. Guo, K. Ha, Y. Hu, W. Louie, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.E. Karnaev, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. While the installation activities in the booster-synchrotron are nearly completed and waiting for the authorization to start the booster commissioning, the injector and accelerator physics group have engaged into the Integrated Testing phase. We did the booster commissioning with simulated beam signals, called extended integrated testing (EIT) to prepare for the booster ring commissioning. It is to make sure the device function along with utilities, timing system and control system, to calibrate diagnostics system, debug High Level Applications, test and optimize all the operation screens to reduce the potential problems during booster commissioning with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)