Author: Tarrant, J.S.
Paper Title Page
WEPJE027 Partial Return Yoke for MICE Step IV and Final Step 2732
 
  • H. Witte, J.S. Berg, S.R. Plate
    BNL, Upton, Long Island, New York, USA
  • A.D. Bross
    Fermilab, Batavia, Illinois, USA
  • J.S. Tarrant
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF129 The MICE Demonstration of Lonization Cooling 4023
 
  • J. Pasternak, C. Hunt, J.-B. Lagrange, K.R. Long
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • V. Blackmore
    Imperial College of Science and Technology, London, United Kingdom
  • N.A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • V.C. Palladino
    INFN-Napoli, Napoli, Italy
  • R. Preece, J.S. Tarrant
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • P. Snopok
    Fermilab, Batavia, Illinois, USA
 
  Funding: SFTC, DOE, NSF, INFN, CHIPP and more
Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)