Paper |
Title |
Page |
TUPTY039 |
LHC Transfer Lines and Injection Tests for Run 2 |
2098 |
|
- C. Bracco, J.L. Abelleira, R. Alemany-Fernández, M.J. Barnes, W. Bartmann, E. Carlier, L.N. Drøsdal, M.A. Fraser, K. Fuchsberger, B. Goddard, J. Jentzsch, V. Kain, N. Magnin, M. Meddahi, J.S. Schmidt, L.S. Stoel, J.A. Uythoven, F.M. Velotti, J. Wenninger
CERN, Geneva, Switzerland
|
|
|
The transfer lines for both rings of the LHC were successfully re-commissioned with beam in preparation for the start-up of Run 2. This paper presents an overview of the transfer line and sector tests performed to bring the LHC back into operation after a two-year period of shutdown for consolidation and upgrade. The tests enabled the debugging of critical software and hardware systems and validated changes made to the transfer and injection systems. The beam-based measurements carried out to validate the optics and machine configuration are summarised along with the performance of the hardware systems.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY039
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPTY050 |
Considerations for the Beam Dump System of a 100 TeV Centre-of-mass FCC hh Collider |
2132 |
|
- T. Kramer, M.G. Atanasov, M.J. Barnes, W. Bartmann, J. Borburgh, E. Carlier, F. Cerutti, L. Ducimetière, B. Goddard, A. Lechner, R. Losito, G.E. Steele, L.S. Stoel, J.A. Uythoven, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
A 100 TeV centre-of-mass energy frontier proton collider in a new tunnel of 80–100 km circumference is a central part of CERN’s Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam dump system, which for each ring will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule, more than an order of magnitude higher than planned for HL-LHC. The transverse proton beam energy densities are even more extreme, a factor of 100 above that of the presently operating LHC. The requirements for the beam dump subsystems are outlined, and the present technological limitations are described. First concepts for the beam dump system are presented and the feasibility is discussed, highlighting in particular the areas in which major technological progress will be needed. The potential implications on the overall machine and other key subsystems are described, including constraints on filling patterns, interlocking, beam intercepting devices and insertion design.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY050
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF089 |
Beam Transfer to the FCC-hh Collider from a 3.3 TeV Booster in the LHC Tunnel |
3901 |
|
- W. Bartmann, M.J. Barnes, M.A. Fraser, B. Goddard, W. Herr, J. Holma, V. Kain, T. Kramer, M. Meddahi, A. Milanese, R. Ostojić, L.S. Stoel, J.A. Uythoven, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
Transfer of the high brightness 3.3 TeV proton beams from the High Energy Booster (HEB) to the 100 TeV centre-of-mass proton collider in a new tunnel of 80–100 km circumference will be a major challenge. The extremely high stored beam energy means that machine protection considerations will constrain the functional design of the transfer, for instance in the amount of beam transferred, the kicker rise and fall times and hence the collider filling pattern. In addition the transfer lines may need dedicated insertions for passive protection devices. The requirements and constraints are described, and a first concept for the 3.3 TeV beam transfer between the machines is outlined. The resulting implications on the parameters and design of the various kicker systems are explored, in the context of the available technology. The general features of the transfer lines between the machines are described, with the expected constraints on the collider layout and insertion lengths.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF089
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF094 |
Possible Reuse of the LHC as a 3.3 TeV High Energy Booster for Hadron Injection into the FCC-hh Collider |
3919 |
|
- B. Goddard, W. Bartmann, M. Benedikt, W. Herr, M. Lamont, P. Lebrun, M. Meddahi, A. Milanese, M. Solfaroli Camillocci, L.S. Stoel
CERN, Geneva, Switzerland
|
|
|
One option for the injector into a 100 TeV centre-of-mass energy frontier proton collider (FCC-hh) in a new tunnel of 80–100 km circumference is to reuse a suitably modified LHC as 3.3 TeV High Energy Booster (HEB). The changes that would be required to the existing LHC insertions are described, including the types and numbers of new magnets and circuits. The limitations on the maximum LHC ramp rate and minimum cycle time discussed. The key question of the minimum FCC filling time achievable with technically possible upgrades is examined, together with the issues of decommissioning for the elements which would need to be removed from the machine. The potential performance reach of the modified LHC as 3.3 TeV HEB is quantified, and implications for FCC-hh discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF094
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|