Author: Soong, K.
Paper Title Page
WEPWA053 First Acceleration in a Resonant Optical-Scale Laser-Powered Structure 2624
 
  • R.B. Yoder
    Goucher College, Baltimore, Maryland, USA
  • R.J. England, Z. Wu
    SLAC, Menlo Park, California, USA
  • K.S. Hazra, B. Matthews, J.C. McNeur, E.B. Sozer, G. Travish
    UCLA, Los Angeles, California, USA
  • E.A. Peralta, K. Soong
    Stanford University, Stanford, California, USA
 
  Funding: U.S. DTRA grant HDTRA1-09-1-0043
The Micro-Accelerator Platform (MAP), an optical-scale dielectric laser accelerator (DLA) based on a planar resonant structure that was developed at UCLA, has been tested experimentally. Successful acceleration was observed after a series of experimental runs at SLAC’s NLCTA facility, in which the input laser power was well below the predicted breakdown limit. Though acceleration gradients were modest (<50 MeV/m), these are the first proof-of-principle results for a resonant DLA structure. We present more detailed results and some implications for future work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPJE021 Fabrication and Demonstration of a Silicon Buried Grating Accelerator 2717
 
  • A.C. Ceballos, R.L. Byer, K.J. Leedle, E.A. Peralta, O. Solgaard, K. Soong
    Stanford University, Stanford, California, USA
  • R.J. England, I.V. Makasyuk, K.P. Wootton, Z. Wu
    SLAC, Menlo Park, California, USA
  • A. Hanuka
    Technion, Haifa, Israel
  • A.D. Tafel
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
 
  Funding: Work supported by the U.S. Department of Energy under Grants DE-AC02-76SF00515, DE-FG06-97ER41276.
Using optical electromagnetic fields in dielectric microstructures, we can realize higher-energy accelerator systems in a more compact, low-cost form than the current state-of-the-art. Dielectric, laser-driven accelerators (DLA) have recently been demonstrated using fused silica structures to achieve about an order-of-magnitude increase in accelerating gradient over conventional RF structures.* We leverage higher damage thresholds of silicon over metals and extensive micromachining capability to fabricate structures capable of electron acceleration. Our monolithic structure, the buried grating, consists of a grating formed on either side of a long channel via a deep reactive ion etch (DRIE).** The grating imposes a phase profile on an incoming laser pulse such that an electron experiences a net change in energy over the course of each optical cycle. This results in acceleration (or deceleration) as electrons travel down the channel. We have designed and fabricated such structures and begun testing at the SLAC National Accelerator Laboratory. We report on the progress toward demonstration of acceleration in these structures driven at 2um wavelength.
* E.A. Peralta et al., Nature 503 (2013)
** C.M. Chang and O. Solgaard, Appl. Phys. Lett. 104 (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)