Author: Sinyatkin, S.V.
Paper Title Page
TUPMA050 NSLS-II Injector Commissioning and Initial Operation 1944
 
  • E.B. Blum, B. Bacha, G. Bassi, J. Bengtsson, A. Blednykh, S. Buda, W.X. Cheng, J. Choi, J. Cupolo, R. D'Alsace, M.A. Davidsaver, J.H. De Long, L. Doom, D.J. Durfee, R.P. Fliller, M. Fulkerson, G. Ganetis, F. Gao, C. Gardner, W. Guo, R. Heese, Y. Hidaka, Y. Hu, M.P. Johanson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, S. Krinsky, Y. Li, W. Louie, M.A. Maggipinto, P. Marino, J. Mead, J. Oliva, D. Padrazo, K. Pedersen, B. Podobedov, R.S. Rainer, J. Rose, M. Santana, S. Seletskiy, T.V. Shaftan, O. Singh, P. Singh, V.V. Smaluk, R.M. Smith, T. Summers, J. Tagger, Y. Tian, W.H. Wahl, G.M. Wang, G.J. Weiner, F.J. Willeke, L. Yang, X. Yang, E. Zeitler, E. Zitvogel, P. Zuhoski
    BNL, Upton, Long Island, New York, USA
  • A. Akimov, P.B. Cheblakov, I.N. Churkin, A.A. Derbenev, S.M. Gurov, S.E. Karnaev, V.A. Kiselev, A.A. Korepanov, E.B. Levichev, S.V. Sinyatkin, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The injector for the National Synchrotron Light Source II storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC this has proven to be more than sufficient for storage ring commissioning. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of injector operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA007 NSLS II Booster Extended Integration Test 1977
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, W. Guo, K. Ha, Y. Hu, W. Louie, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.E. Karnaev, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. While the installation activities in the booster-synchrotron are nearly completed and waiting for the authorization to start the booster commissioning, the injector and accelerator physics group have engaged into the Integrated Testing phase. We did the booster commissioning with simulated beam signals, called extended integrated testing (EIT) to prepare for the booster ring commissioning. It is to make sure the device function along with utilities, timing system and control system, to calibrate diagnostics system, debug High Level Applications, test and optimize all the operation screens to reduce the potential problems during booster commissioning with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)