Author: Senichev, Y.
Paper Title Page
MOPWA044 Quasi-frozen Spin Method for EDM Deuteron Search 213
 
  • Y. Senichev, A. Lehrach, B. Lorentz, R. Maier
    FZJ, Jülich, Germany
  • S.N. Andrianov, A.N. Ivanov
    St. Petersburg State University, St. Petersburg, Russia
  • M. Berz, E. Valetov
    MSU, East Lansing, Michigan, USA
  • S. Chekmenev
    RWTH, Aachen, Germany
 
  To search for EDM using proton storage ring with purely electrostatic elements the concept of frozen spin method has been proposed by BNL. This method is based on two facts: in the equation of the spin precession the magnetic field dependence is entirely eliminated and at “magic” energy the spin precession frequency coincides with the precession frequency of the momentum. In case of deuteron the anomalous magnetic moment is negative (G=-0.142), therefore we have to use the electrical and magnetic field simultaneously keeping the frozen spin direction along the momentum as in the pure electrostatic ring. In this article we suggest the concept of the quasi-frozen spin when the spin oscillates around the momentum direction within the half value of the advanced spin phase each time returning back by special optics. Due to the low value of the anomalous magnetic moment of deuteron an effective contribution to the expected EDM effect is reduced only by a few percent.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)