Paper | Title | Page |
---|---|---|
MOPHA040 | First Results of Energy Measurements with a Compact Compton Backscattering Setup at ANKA | 876 |
|
||
Funding: This work is funded by the European Union under contract PITN-GA-2011-289191 An electron energy measurement setup based on the detection of Compton backscattered photons, generated by laser light scattered off the relativistic electron beam, has been proposed and developed for operation at the ANKA storage ring of the Karlsruhe Institute of Technology (KIT). In contrast to conventional methods based on head-on collisions, the setup at ANKA is, for the first time, realized in a transverse configuration where the laser beam hits the electron beam at an angle of ~90°. This makes it possible to achieve a relatively low-cost and very compact setup since it only requires a small side-port instead of a straight section. This development could benefit storage rings with restricted space or where no straight sections are available, for example due to interferences with existing beamlines. The setup and the first measurement results are presented in the paper. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWA042 | Status of the Accelerator Physics Test Facility FLUTE | 1506 |
|
||
A new compact versatile linear accelerator named FLUTE (Ferninfrarot Linac Und Test Experiment) is currently under construction at the Karlsruhe Institute of Technology (KIT). It will serve as an accelerator test facility and allow conducting a variety of accelerator physics studies. In addition, it will be used to generate intense, ultra-short THz pulses for photon science experiments. FLUTE consists of a ~7 MeV photo-injector gun, a ~41 MeV S-band linac and a D-shaped chicane to compress bunches to a few femtoseconds. This contribution presents an overview of the project status and the accompanying simulation studies. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA042 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWA043 | Non-interferometric Spectral Analysis of Synchrotron Radiation in the THz regime at ANKA | 1509 |
|
||
Interferometry is the quasi-standard for spectral measurements in the THz- and IR-range. The frequency resolution, however, is limited by the travel range of the interferometer mirrors. Therefore, a resolution in the low megahertz range would require interferometer arms of about 100 m. As an alternative, heterodyne measurements provide a resolution in the Hertz range, an improvement of 6 orders of magnitude. Here we present measurements done at ANKA with a VDI WR3.4SAX, a mixer that can be tuned to frequencies from 220 GHz to 330 GHz and we show how the bunch filling pattern influences the amplitude of specific frequencies. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMA040 | Magnet Studies for the Accelerator FLUTE at KIT | 2849 |
|
||
At KIT we are currently constructing the compact linear accelerator FLUTE (Ferninfrarot Linac Und Test Experiment). This 41 MeV machine is aimed at accelerator physics and synchrotron radiation research, using ultra-short electron bunches. The electrons are generated at a photo-cathode using picosecond long UV laser pulses. A magnetic chicane is used to compress the bunches longitudinally to a few femtoseconds. This contribution describes both the magnet design, in particular the optimization of the chicane dipoles based on finite element method (FEM) simulations, as well as the implementation of a magnet measurement system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |