Paper | Title | Page |
---|---|---|
TUXB1 | FRANZ and Small-Scale Accelerator-Driven Neutron Sources | 1276 |
|
||
This paper gives an overview of the opportunities and challenges of high-intensity, low-energy light-ion accelerators for neutron production. Applications of this technology range from the study of stellar nucleosynthesis and astrophysical phenomena to medical applications such as Boron neutron capture therapy (BNCT). The paper includes details of the FRANZ facility, under development at Frankfurt University. | ||
![]() |
Slides TUXB1 [3.514 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF023 | Massless Beam Separation System for Intense Ion Beams | 3736 |
|
||
The ExB chopper* in the Low Energy Beam Transport (LEBT) section of the accelerator-driven neutron source FRANZ** will form the required pulses with a repetition rate of 257 kHz out of the primary 120 keV, 50 mA DC proton beam. A following beam separation system will extract the deflected beam out of the beamline and minimize the thermal load by beam losses in the vacuum chamber. To further avoid an uncontrolled production of secondary particles, a novel massless septum system is designed for the beam separation. The septum system consists of a static C-magnet with optimized pole shapes, which will extract the beam with minimal losses, and a magnetic shielding tube, which will shield the transmitted pulsed beam from the fringing field of the dipole. The magnetic field and the beam transport properties of the system were numerically investigated. A main deflection field of about 250 mT was achieved, whereas the fringing field was reduced to below 0.3 mT on the beam axis at 60 mm distance from the dipole. With this settings, the beam was numerically transported through the system with minimal emittance growth. Manufacturing of the septum system has started.
* Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014. ** Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF024 | LEBT Dynamics and RFQ Injection | 3739 |
|
||
The Low Energy Beam Transport (LEBT) section at the accelerator-driven neutron source FRANZ* consists of four solenoids, two of which match the primary proton beam into the chopper. The remaining two solenoids are intended to prepare the beam for injection into the RFQ. In the first commissioning phase, the LEBT successfully transported a 14 keV He beam at low intensities**. In the current commissioning phase, the beam energy is increased to the RFQ injection energy of 120 keV. In the upcoming step, the intensity will be increased from 2 mA to 50 mA. Beam dynamics calculations include effects of different source emittances, position and angle offsets and the effects of space charge compensation levels. In addition, the behavior of the undesired hydrogen fractions, H2+ and H3+, and their influence on the performance within the RFQ is simulated.
* Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012. ** Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |