FRANZ and Small-Scale Accelerator-Driven Neutron Sources

IAP, Goethe-Universität Frankfurt am Main

*wiesner@iap.uni-frankfurt.de

IPAC'15, Richmond, VA
Outline

1) Introduction: Neutron Production
2) Small-Scale Accelerator-Driven Facilities
 • Concept & Opportunities
 • Challenges: High-Intensity Beam, High-Power Target, Time Structure
3) Frankfurt Neutron Source FRANZ
4) Conclusion
Introduction: Neutron Research

- Electrically neutral.
- Sensitivity for magnetic properties, different isotopes, light elements in particular.
- High penetration depth in material.
- Material Science.
- Neutron imaging.
- Understanding of neutron capture processes relevant for nuclear astrophysics.
- Cancer treatment (BNCT).

Introduction: Nuclear Astrophysics

Stellar nucleosynthesis:
• About 50% of the element abundances beyond iron are produced via the s-process.
• s-process takes place in AGB stars.
• Neutron temperature: $k_B T = 8$ keV to 90 keV [Reifarth et al., 2014].
• Modelling requires neutron capture cross-sections from 1 keV to 400 keV.
• Requires neutron sources with high flux in this energy region.

Picture: C. Arlandini et al., Nachr.,- FZK 33 2/2001,p. 178
Introduction: BNCT

- Boron Neutron Capture Therapy (BNCT): Boron-10 (which is selectively incorporated into tumor cells) captures n and decays into short-ranging α and ^7Li that destroy cancer cell.

- Currently, 8 initiatives to develop accelerator-based BNCT.

- Flux of $10^9 \frac{n}{s \cdot cm^2}$ required (high duty cycle).

- Epithermal neutrons: $W_n = 0.5$ eV to 10 keV

Small-Scale Accelerator-Driven Facilities

- Neutrons produced via nuclear reactions using light-ion beams:
 - $^7\text{Li}(p,n)^7\text{Be}$ (threshold: 1.88 MeV; highest n yield, 1 keV..500 keV neutrons, Li difficult to handle)
 - $^9\text{Be}(p,n)^9\text{B}$ (threshold: 2.06 MeV; lower n yield, MeV neutrons)
 - $^9\text{Be}(d,n)^{10}\text{B}$ (no threshold, lower n yield, MeV neutrons).
- Neutron yield: $10^{11}..10^{12}$ n/mA/s
- Accelerator: p, d with $W_b \approx 2$ MeV..13 MeV
- Small-scale facilities (cost-efficient, affordable for hospital/university)

Time-of-Flight (TOF) Method

- TOF method allows to measure the neutron capture cross-sections as a function of the neutron energy.
- Pulsed primary beam required.
- Adequate neutron spectrum assures low background.

- 80 cm flight path
- $E_n = 1..200$ keV

Other Reactions

Prompt Flash

(n,γ) on sample

I [a.u.]

$E_n = 200$ keV $E_n = 128$ keV

γ BaF$_2$ detector at Frankfurt.
Challenges: High Intensity

Compact, cost-efficient, reliable facilities – with high primary beam intensity \((I_b > 10 \text{ mA}) \), high-power target and flexible time structure.

\(a \) Electrostatic Accelerators

NUANS, Nagoya Univ., Japan:
Dynamitron, \(p \), 2.8 MeV, 15 mA

TESQ, Buenos Aires, Argentina:
\(p \), 2.8 MeV, 30 mA

Under construction.

Katsuya Hirota, IPAC’15, WEPWA019

High Intensity

b) RFQ

PKUNIFTY, Peking Univ., China:
- d, 2 MeV, 50 mA

LENOS, LNL, Legnaro, Italy:
- p, 5 MeV, 50 mA

4-rod RFQ: 201.5 MHz, 1%..10% duty cycle, Be target

4-vane RFQ: 352.2 MHz, CW, 7.1 m long, Be target

High Intensity

c) RFQ + DTL

CPHS, Tsinghua Univ., China:
- p, 50 mA
- 3 MeV RFQ, 13 MeV DTL,
- 2.5% duty factor, $W_b = 16$ kW,
- Be target

FRANZ, Frankfurt Univ., Germany:
- p, 2 MeV, 50 mA.
- 700 keV RFQ, 2 MeV DTL,
- 2.4 m total length,
- CW, Li target

LENS, Indiana Univ., USA:
- p, 13 MeV, 25 mA.
- 1.8% duty factor, $W_b = 6$ kW, Be target

Under Construction.

In Operation.
High-Power Targets

Examples:
Lithium-Targets

- 4 kW, 14 mm beam \rightarrow 2.6 kW/cm2 \rightarrow > 100 kW/cm3.
- Lithium melting point \approx 180°C.

FRANZ: solid lithium layer

SARAF: liquid lithium target (windowless setup)

Designed for 4 kW (14 mm beam size).

Successfully commissioned with $W_b = 2.3$ kW.

M. Paul et al., J. Radioanal. Nucl. Chem., 12.03.2015.
Flexible Time Structures

- CW (or high duty cycle): high average flux (activation measurements, BNCT). Can lead to challenging cooling scenarios.
- Short pulses: allow TOF, pulsed neutron imaging.
- Special case (FRANZ): short pulses (high peak intensity) with repetition rate so high that ion source and RFQ-DTL have to be operated in DC/CW.
Frankfurt Neutron Source FRANZ

<table>
<thead>
<tr>
<th>Mode</th>
<th>Neutron Flux</th>
<th>Measurement Description</th>
<th>Energy</th>
<th>Current</th>
<th>Pulse Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation Mode</td>
<td>high average</td>
<td>measurement of the integrated n-capture cross sections</td>
<td>p, 2 MeV</td>
<td>2 mA</td>
<td></td>
<td>cw operation</td>
</tr>
<tr>
<td>Compressor Mode</td>
<td>high (peak)</td>
<td>energy-dependent measurements of n-capture cross sections (using TOF)</td>
<td>p, 2 MeV</td>
<td>50 mA</td>
<td>1 ns, 250 kHz</td>
<td>(at the target)</td>
</tr>
</tbody>
</table>
Frankfurt Neutron Source FRANZ

- Arc-discharge driven ion source.
- Proton current: 50 mA (240 mA).
- Current density: 480 mA/cm².
- DC operation.
- Proton fraction > 90 %.
- \(\varepsilon_{\text{rms}, \text{norm}} < 0.08 \text{ mm}\cdot \text{mrad.} \)
- Beam energy: 120 keV.
Frankfurt Neutron Source FRANZ

Low Energy Beam Transport (LEBT) Section

- 4 Solenoids.
- Chopper.
- SC comp. (Sec. 1).
- No SC comp. (Sec. 2, pulsed).
- Installed and commissioned with 14 keV He$^+$ beam.

Faraday Cup 1

HV Pulse Generator

Aperture: $r = 50$ mm

$L = 3.7$ m
Frankfurt Neutron Source FRANZ

Chopping parameters
- p, 50 mA, 120 keV.
- Pulse length: 50 ns..350 ns.
- Rep. rate: 250 kHz.
Frankfurt Neutron Source FRANZ

Chopping parameters
- p, 50 mA, 120 keV.
- Pulse length: 50 ns..350 ns.
- Rep. rate: 250 kHz.
Frankfurt Neutron Source FRANZ

Chopping parameters
- \(p \), 50 mA, 120 keV.
- Pulse length: 50 ns..350 ns.
- Rep. rate: 250 kHz.

Beam-Separation:
O. Payir, IPAC'15, THPF023

\[
\int (\vec{F}_{\text{elec}} + \vec{F}_{\text{mag}}) \, dz = 0
\]

Pulsed Beam

DC Beam

Electric Deflector

\(V_{\text{defl}} = 12 \text{ kV} \)
Frankfurt Neutron Source FRANZ

Beam Pulse Measurements,
\(\text{He}^+, 14 \text{ keV} \)

\(r_{\text{aperture}} = 50 \text{ mm} \)

\(\text{I}_{\text{dipole}} = 40.0 \text{ A} \)

\(f_{\text{rep}} = 257 \text{ kHz} \)
Frankfurt Neutron Source FRANZ

2 MeV Linac Section

- Total length: 2.4 m.
- $f_{rf} = 175$ MHz.
- 4-rod RFQ manufactured.
 Awaiting delivery.
- IH cavity to be copper plated.
- Coupling allows operation with single power amplifier.
- CW operated.
- Thermal losses.

H. Podlech, A. Schempp
M. Heilmann, U. Ratzinger
Frankfurt Neutron Source FRANZ

RFQ Prototype Module

- **RF Power Test**
 - 30 kW → 75 kW/m ($t \approx 200$ h).
 - 45 kW → 115 kW/m ($t \approx h$) → 94 kV.
 - RFQ design specs: 59 kW/m (50 mA).

Milled cooling channels covered with 3 mm thick copper plating.

Manufactured by NTG company

Brazed silver tuning plates.
Frankfurt Neutron Source FRANZ

Medium Energy Beam Transport (MEBT) Section

2 external QP triplets:
- Aperture: 30–38–30 mm.
- \(\frac{1}{r} \int B \, dz : 2.1–3.0–2.1 \, \text{T.} \)

RT CH rebuncher cavity:
- 5 gaps.
- Energy variation \(\Delta W_b = \pm 0.2 \, \text{MeV} \).
- \(f_{\text{rf}} = 175 \, \text{MHz.} \)
Frankfurt Neutron Source FRANZ

• Mobley-type bunch compressor, extended for high beam intensity.
• Electric kicker:
 • $f = 2.5$ MHz.
• Magnetic ion guiding system.
• Multiaperture rebuncher.
• Final focus rebuncher:
 • 6 gaps, 11.5 kW.
FRANZ is currently under construction at Frankfurt University:

- Deliver neutrons for nuclear astrophysics and material sciences.
- Accelerator test bench.
- Education of students in accelerator physics.

Physics Building, Goethe-Universität Frankfurt
Conclusion

• Small-scale accelerator-driven neutron sources can provide intense neutron beams at modest sizes and costs.

• The neutron energy range of keV to MeV is especially suited for nuclear astrophysics and BNCT.

• Challenges are: compact, high-intensity facilities with high-power targets and flexible time structures.

• FRANZ, under construction at Frankfurt University, is based on a 2 MeV, 50 mA proton driver, which allows operation from cw (2 mA) to short, 1 ns pulses at 250 kHz.
Thanks to many colleagues for fruitful discussions and for sharing thoughts and material. Thanks to Andres Kreiner and Arik Kreisel for providing me with additional information.

Thank you for your attention!