Paper |
Title |
Page |
TUPTY048 |
Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams |
2124 |
|
- V. Kain, O. Aberle, C. Bracco, M.A. Fraser, F. Galleazzi, A. Kosmicki, F.L. Maciariello, M. Meddahi, F.-X. Nuiry, G.E. Steele, F.M. Velotti
CERN, Geneva, Switzerland
- E. Gianfelice-Wendt
Fermilab, Batavia, Illinois, USA
|
|
|
The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY048
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF099 |
Upgrade of the SPS Ion Injection System |
3938 |
|
- J.A. Uythoven, J. Borburgh, E. Bravin, S. Burger, E. Carlier, J.-M. Cravero, L. Ducimetière, S.S. Gilardoni, B. Goddard, J. Hansen, E.B. Holzer, M. Hourican, T. Kramer, F.L. Maciariello, D. Manglunki, F.-X. Nuiry, A. Perillo Marcone, G.E. Steele, F.M. Velotti, H. Vincke
CERN, Geneva, Switzerland
|
|
|
As part of the LHC Injectors Upgrade Project (LIU) the injection system into the SPS will be upgraded for the use with ions. The changes will include the addition of a Pulse Forming Line parallel to the existing PFN to power the kicker magnets MKP-S. With the PFL a reduced magnetic field rise time of 100 ns should be reached. The missing deflection strength will be given by two new septum magnets MSI-V, to be installed between the existing septum MSI and the kickers MKP-S. A dedicated ion dump will be installed downstream of the injection elements. The parameter lists of the elements and studies concerning emittance blow-up coming from the injection system are presented. The feasibility of the 100 ns kicker rise time and the small ripple of the septum power converter are presented. Material studies of the ion dump are presented together with the radiation impact.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF099
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|