Author: Nadolski, L.S.
Paper Title Page
MOPWA012 Study of Optimal MBA Lattice Structures for the SOLEIL Upgrade 106
 
  • R. Nagaoka, P. Brunelle, F.J. Cullinan, X.N. Gavaldà, A. Loulergue, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Within the context of a future upgrade of the SOLEIL ring, a series of lattice studies has been made with the aim of reducing the current 4 nm-rad horizontal emittance ex by more than an order of magnitude, with a dynamic aperture allowing off-axis injection. As in most upgrades, the important constraint imposed is to keep all the existing straight sections and photon source points. A particularity of SOLEIL are the short straight sections in half of the 16 double-bend cells, created in between the dipoles, which limits the number of dipoles in a MBA cell. In the previous studies, a combination of 5- and 4BA was followed, where with the use of longitudinal gradient bends (LGBs), ex ~440 pm-rad was obtained. The present paper reports on studies extended along the same strategy: In particular, the feasibility and the attainable ex are pursued with a combination of 7- and 6BA, by employing dipoles with transverse gradient and LGBs. In addition, the effectiveness of a few known nonlinear optimization methods, such as the resonance driving term cancellation, interleaved sextupoles with proper phases, and genetic algorithm-based numerical searches shall be explored.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA012 SOLEIL Status Report 1419
 
  • A. Nadji, Y.-M. Abiven, F. Bouvet, P. Brunelle, A. Buteau, N. Béchu, L. Cassinari, M.-E. Couprie, X. Delétoille, C. Herbeaux, N. Hubert, N. Jobert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, L.S. Nadolski, R. Nagaoka, P. Prigent, K.T. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  The 2.75 GeV synchrotron light source SOLEIL (France) delivers photons to 27 beamlines and 2 new ones are under construction. The commissioning of the Femtoslicing operation mode involving two beamlines is in progress. The uniform filling pattern is now available to users with a 500 mA stored beam current. The operation of the two canted and long beamlines ANATOMIX and Nanoscopium both using in-vacuum insertion devices (IDs) as a photon source has been raising challenges still under investigation. Upgrades of crucial subsystem equipment like magnet power supplies, storage ring RF input power couplers, and solid state amplifiers are continuing. New user requests for beam stability are under upgrade consideration. Other projects for the storage ring are ongoing such as the design and construction of new insertion devices, new multipole injection kicker, localised small and round photon beam production, as well as R&D on 500 MHz solid-state amplifiers. In parallel first studies for a future upgrade of the machine have been progressing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE035 Optimization of Turn-by-Turn Measurements at Soleil and Alba Light Sources 1686
 
  • M. Carlà, G. Benedetti, Z. Martí
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  Turn-by-turn measurements paves the way for fast storage ring diagnostics. On the other hand turn-by-turn technique is by its very nature delicate, requiring an extensive system tuning and understanding. During last year several attempts to recover linear model informations from turn-by-turn measurements has been carried out in cooperation between the synchrotrons of SOLEIL and ALBA. A routine to extract phase advance and betatron amplitude from turn-by-turn measurements in presence of damping has been developed. Moreover a procedure to retrieve quadrupole errors from such observables has been developed tested and verified against the traditional diagnostics tools based on closed orbit measurements. A comparison between the different methods and the performance of the two different experimental setups are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBD2 Survey of Commissioning of Recent Storage Ring Light Sources 2482
 
  • M. Borland
    ANL, Argonne, Ilinois, USA
  • R. Bartolini, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Kuske, R. Müller
    HZB, Berlin, Germany
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J.A. Safranek
    SLAC, Menlo Park, California, USA
  • S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
  • Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source and other existing storage ring light sources are contemplating replacing an existing, operating storage ring with a multi-bend achromat lattice. One issue is that existing light sources have large user communities who are greatly inconvenienced by extended shutdowns. Hence, there will be a premium placed on rapid commissioning of the new lattice. To better understand the possibilities, we undertook a survey of recent commissioning experience at third-generation light sources. We present a summary of that survey here.
 
slides icon Slides WEBD2 [0.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)