Paper | Title | Page |
---|---|---|
MOPWA036 | Status of Injection Studies into the Figure-8 Storage Ring | 187 |
|
||
The ongoing investigations on the design of the Figure-8 Storage Ring* at Frankfurt University focus on the beam injection. The research includes simulations as well as a scaled down experiment. The studies for an optimized adiabatic magnetic injection channel, starting from a moderate magnetic field up to a maximum of 6 Tesla, with a realistic field model of toroidal coils due to beam dynamics with space charge will be shown. For the envisaged ExB kicker system the simulations deal with beam potential constraints and a multi-turn injection concept in combination with an adiabatic magnetic compression. To investigate the concept of the beam injection into a toroidal magnetic field, a scaled down room temperature experiment is implemented at the university. It is composed of two 30 degree toroidal segments, two volume ion sources, two solenoids and two different types of beam detectors. The experiment is used to investigate the beam transport and dynamics of the laterally injected and “circulating” beam through the magnetic configuration. To set up the injection experiment, theoretical calculations and beam simulations with bender** are used.
* M. Droba et al., Proc. of IPAC'14, Dresden, Germany, TUPRO045 ** D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C.Wiesner, Proc. of HB2014, East Lansing, USA, WEO4LR02 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPHA025 | Control System for FRANZ Facility | 830 |
|
||
The Frankfurt Neutron Source at the Stern- Gerlach Zentrum (FRANZ) will use the reaction of 7Li(p, n)7Be to produce an intense neutron beam. The neutron energy will be between 10 and 500 keV depending on the primary proton beam, which is variable between 1.8 and 2.2 MeV. A volume type ion source will be used to deliver a 120 keV proton beam with currents up to 200 mA. Like any other facility, FRANZ will need a powerful and reliable control system that also allows monitoring the whole accelerator target areas and experiments. Also interlock and safety systems have to be included to protect personnel from radiation hazards associated with accelerator operations and accompanying experiments. The FRANZ control system is still under development. The ion source will be the first element to be controlled, and to gain experience. A test ion source will be used for testing and examining the performance of this control system. In this paper, the plasma properties, filament ageing and an internal control loop for stable beam production with respect to controlling issues will be discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUXB1 | FRANZ and Small-Scale Accelerator-Driven Neutron Sources | 1276 |
|
||
This paper gives an overview of the opportunities and challenges of high-intensity, low-energy light-ion accelerators for neutron production. Applications of this technology range from the study of stellar nucleosynthesis and astrophysical phenomena to medical applications such as Boron neutron capture therapy (BNCT). The paper includes details of the FRANZ facility, under development at Frankfurt University. | ||
![]() |
Slides TUXB1 [3.514 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF023 | Massless Beam Separation System for Intense Ion Beams | 3736 |
|
||
The ExB chopper* in the Low Energy Beam Transport (LEBT) section of the accelerator-driven neutron source FRANZ** will form the required pulses with a repetition rate of 257 kHz out of the primary 120 keV, 50 mA DC proton beam. A following beam separation system will extract the deflected beam out of the beamline and minimize the thermal load by beam losses in the vacuum chamber. To further avoid an uncontrolled production of secondary particles, a novel massless septum system is designed for the beam separation. The septum system consists of a static C-magnet with optimized pole shapes, which will extract the beam with minimal losses, and a magnetic shielding tube, which will shield the transmitted pulsed beam from the fringing field of the dipole. The magnetic field and the beam transport properties of the system were numerically investigated. A main deflection field of about 250 mT was achieved, whereas the fringing field was reduced to below 0.3 mT on the beam axis at 60 mm distance from the dipole. With this settings, the beam was numerically transported through the system with minimal emittance growth. Manufacturing of the septum system has started.
* Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014. ** Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF024 | LEBT Dynamics and RFQ Injection | 3739 |
|
||
The Low Energy Beam Transport (LEBT) section at the accelerator-driven neutron source FRANZ* consists of four solenoids, two of which match the primary proton beam into the chopper. The remaining two solenoids are intended to prepare the beam for injection into the RFQ. In the first commissioning phase, the LEBT successfully transported a 14 keV He beam at low intensities**. In the current commissioning phase, the beam energy is increased to the RFQ injection energy of 120 keV. In the upcoming step, the intensity will be increased from 2 mA to 50 mA. Beam dynamics calculations include effects of different source emittances, position and angle offsets and the effects of space charge compensation levels. In addition, the behavior of the undesired hydrogen fractions, H2+ and H3+, and their influence on the performance within the RFQ is simulated.
* Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012. ** Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |