Paper | Title | Page |
---|---|---|
TUBD1 | Optics Measurement and Correction during Acceleration with Beta-squeeze in RHIC | 1380 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successfully beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections. As a valuable by-product, these corrections have minimized the beta-beat at the profile monitors, so providing more precise measurements of the evolution of the beam emittances during acceleration. |
||
![]() |
Slides TUBD1 [1.581 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBD1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI048 | Experimental Demonstration of an Interaction Region Beam Waist Position Knob for Luminosity Leveling | 2357 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In this paper, we report on the experimental implementation of the model-dependent control of the interaction region beam waist position (s* knob) at the Relativistic Heavy Ion Collider (RHIC). The s* adjustment provides an alternative way of controlling the luminosity and is the only known method to control the luminosity and to reduce the pinch effect of the future eRHIC. We first demonstrate the effectiveness of the s* knob in luminosity controlling and its application in the future electron ion collider, eRHIC, followed by details of the experimental demonstration of such knob in RHIC. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI048 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI060 | RHIC Polarized Proton-Proton Operation at 100 GeV in Run 15 | 2384 |
|
||
The first part of RHIC Run 15 consisted of nine weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance this run. The largest effort consisted of commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses therefore raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a functioning e-lens which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic capture scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI060 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF046 | Operation of the RHIC Injector Chain with Ions from EBIS | 3804 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Since 2012 gold and all other ions for the RHIC injector chain have been provided by an Electron Beam Ion Source (EBIS). The source is followed by an RFQ, a short Linac, and a 30 m transport line. These components replace the Tandem van de Graaff and associated 840 m transfer line. They provide ions at 2 MeV per nucleon (kinetic energy) for injection into the AGS Booster. The setup and operation of Booster and AGS with various ions from the new source are reviewed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF046 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF059 | RHIC Electron Lenses Upgrades | 3830 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015[1], two electron lenses [2] were used for the first time to partially compensate for the head-on beam-beam effect. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF059 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |