Author: Loseth, B.T.
Paper Title Page
WEPWA064 Ionization Cooling Channels in COSY Infinity 2652
 
  • B.T. Loseth, M. Berz
    MSU, East Lansing, Michigan, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Ionization cooling is a method to reduce the emittance of a beam through the use of absorbers, rf cavities, and strong solenoids for focusing, arranged into a condensed lattice. By tuning lattice parameters, it is possible to construct a staged cooling channel in which the beam emittance is always considerably greater than the minimum value. In the late stages of the cooling channel, space charge effects can become a significant obstacle to further emittance reduction once the beam becomes sufficiently condensed. A method has been implemented in COSY Infinity, a beam dynamics simulation and analysis code, which efficiently and accurately calculates the self-fields of all particles on each other based on a variant of the Fast Multipole Method (FMM). In this paper, we present simulations of a muon ionization cooling channel performed in COSY, utilizing the FMM, benchmarked against G4beamline, a standard code for muon beam analysis, in order to investigate the significance of space charge effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)