Paper |
Title |
Page |
MOPWA044 |
Quasi-frozen Spin Method for EDM Deuteron Search |
213 |
|
- Y. Senichev, A. Lehrach, B. Lorentz, R. Maier
FZJ, Jülich, Germany
- S.N. Andrianov, A.N. Ivanov
St. Petersburg State University, St. Petersburg, Russia
- M. Berz, E. Valetov
MSU, East Lansing, Michigan, USA
- S. Chekmenev
RWTH, Aachen, Germany
|
|
|
To search for EDM using proton storage ring with purely electrostatic elements the concept of frozen spin method has been proposed by BNL. This method is based on two facts: in the equation of the spin precession the magnetic field dependence is entirely eliminated and at “magic” energy the spin precession frequency coincides with the precession frequency of the momentum. In case of deuteron the anomalous magnetic moment is negative (G=-0.142), therefore we have to use the electrical and magnetic field simultaneously keeping the frozen spin direction along the momentum as in the pure electrostatic ring. In this article we suggest the concept of the quasi-frozen spin when the spin oscillates around the momentum direction within the half value of the advanced spin phase each time returning back by special optics. Due to the low value of the anomalous magnetic moment of deuteron an effective contribution to the expected EDM effect is reduced only by a few percent.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA044
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF030 |
Antiproton Acceleration and Deceleration in the HESR |
3758 |
|
- B. Lorentz, T. Katayama, A. Lehrach, R. Maier, D. Prasuhn, R. Stassen, H. Stockhorst, R. Tölle
FZJ, Jülich, Germany
|
|
|
The High Energy Storage Ring (HESR) is a part of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The ring is used for hadron physics experiments with a pellet target and the PANDA detector, and will supply antiprotons of momenta from 1.5 GeV/c to 15 GeV/c. To cover the whole energy range a flexible adjustment of transition energy and the corresponding gamma-t value is foreseen. For Injection and Accumulation of Antiprotons delivered from the CR at a momentum of 3.8 GeV/c (gamma=4.2), the HESR optics will be tuned to gamma-t=6.2. For deceleration down to a momentum of 1.5 GeV/c this optic is suitable as well. Stochastic cooling at an intermediate energy is required to avoid beam losses caused by adiabatic growth of the beam during deceleration. For acceleration to 8 GeV/c (gamma=8.6) the optics will be changed after accumulation of the antiproton beam to gamma-t=14.6. For momenta higher than 8 GeV/c the beam will be debunched at 8 GeV/c, optics will be changed to gamma-t=6.2, and after adiabatic rebunching the beam will be accelerated to 15 GeV/c (gamma=16). Simulations show the feasibility of the described procedures with practically no beam losses.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF030
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|