Author: Kuske, P.
Paper Title Page
MOPWA020 Longitudinal Stability Of Short Bunches in Storage Rings with Strong Longitudinal Focusing 135
 
  • P. Kuske
    HZB, Berlin, Germany
 
  Funding: work supported by the BMBF
In the BESSY VSR project, the variable bunch length storage ring, two high gradient accelerating structures at 1.5 and 1.75 GHz will be phased such that long and short bunches can be stored simultaneously. The longitudinal stability of the short bunches is investigated taking into account the shielded CSR- and a purely inductive impedance. Multi particle tracking studies and numerical solutions of the Vlasov-Fokker-Planck equation show that threshold currents for short bunches do not follow the simple scaling law which was found for long bunches. The inductive impedance can even lower the thresholds for the instability. With an 80 times increased accelerating gradient and reasonable assumptions on the inductive impedance for shorter bunches stable operation can be expected with bunches 1.8 ps long (RMS-value) and 0.8 mA current. According to the calculations and operating in a dedicated low-α mode will produce stable 40 μA bunches with 400 fs length
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA018 Progress Report of the Berlin Energy Recovery Project BERLinPro 1438
 
  • M. Abo-Bakr, W. Anders, K.B. Bürkmann-Gehrlein, A. Burrill, A.B. Büchel, P. Echevarria, A. Frahm, H.-W. Glock, A. Jankowiak, C. Kalus, T. Kamps, G. Klemz, J. Knobloch, J. Kolbe, J. Kühn, O. Kugeler, B.C. Kuske, P. Kuske, A.N. Matveenko, A. Meseck, R. Müller, A. Neumann, N. Ohm, K. Ott, E. Panofski, F. Pflocksch, D. Pflückhahn, J. Rahn, J. Rudolph, M. Schmeißer, O. Schüler, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association
The Helmholtz Zentrum Berlin is constructing the Energy Recovery Linac Project BERLinPro on its site in Berlin Adlershof. The project is intended to expand the required accelerator physics and technology knowledge mandatory for the design, construction and operation of future synchrotron light sources. The project goal is the generation of a high current (100 mA), high brilliance (norm. emittance below 1 mm mrad) cw electron beamat 2~ps rms bunch duration or below. The planning phase of the project is completed and the design phase of most of the components is finished. Many of them have already been ordered. After some delay the construction of the building has started in February 2015. The status of the various subprojects as well as a summary of current and future activities will be given. Major project milestones and details of the project time line will be finally introduced.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBD2 Survey of Commissioning of Recent Storage Ring Light Sources 2482
 
  • M. Borland
    ANL, Argonne, Ilinois, USA
  • R. Bartolini, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Kuske, R. Müller
    HZB, Berlin, Germany
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J.A. Safranek
    SLAC, Menlo Park, California, USA
  • S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
  • Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source and other existing storage ring light sources are contemplating replacing an existing, operating storage ring with a multi-bend achromat lattice. One issue is that existing light sources have large user communities who are greatly inconvenienced by extended shutdowns. Hence, there will be a premium placed on rapid commissioning of the new lattice. To better understand the possibilities, we undertook a survey of recent commissioning experience at third-generation light sources. We present a summary of that survey here.
 
slides icon Slides WEBD2 [0.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)