Author: Ko, I.S.
Paper Title Page
TUPJE032 Updates of the PAL-XFEL Undulator Program 1675
 
  • D.E. Kim, M.-H. Cho, Y.-G. Jung, H.-S. Kang, I.S. Ko, H.-G. Lee, S.B. Lee, W.W. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S. Karabekyan, J. Pflüger
    XFEL. EU, Hamburg, Germany
 
  Pohang Accelerator Laboratory (PAL) is developing a 0.1 nm SASE based FEL based on 10 GeV S-band linear accelerator named PAL-XFEL. At the first stage, PAL-XFEL needs two undulator lines for photon source. The hard X-ray undulator line requires 18 units of 5 m long hybrid-type conventional planar undulator and soft X-ray line requires 6 units of 5 m long hybrid type planar undulator with additional few EPUs for final polarization control. PAL is developing undulator magnetic structure based on EU-XFEL concepts. The key parameters are min pole gap of 8.3 mm, with period length 26 mm (HXU), 35 mm (SXU), and 5.0 m magnetic length. . In this report, the prototyping, and the development of pole tuning procedure, the impact of the background field error, and the effects of the girder bending on the optical phase error will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYC2 Status of the PAL XFEL Construction 2439
 
  • H.-S. Kang, K.W. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work has been supported by the Ministry of Science, ICT and Future Planning of Korea.
The PAL-XFEL, a 0.1-nm hard X-ray FEL facility consisting of a 10-GeV S-band linac, is being constructed in Pohang, South Korea. Its building construction was completed at the end of 2014. The major procurement contracts were complete for the critical components of S-band linac modules and undulators. The installation of linac, undulator, and beam line will be completed by 2015. The commissioning will get started in January 2016 aiming for the first lasing in 2016. We will report the current status, construction progress, and commissioning plans for the PAL XFEL project, including major subsystem preparations.
 
slides icon Slides WEYC2 [9.069 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEYC2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE033 A Research on the Reverse Tapering Method to Gain High Power Polarized Photon Beam with Fixed Wavelength 1678
 
  • C.H. Shim, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Han, Y.W. Parc
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Polarization of soft X-ray photon can be controlled with combination between planar undulators and helical ones. We need to give a reverse tapering to the planar undulators to make microbunching in the electron beam while the linearly polarized radiation power is depressed. In this case, however, resonance wavelengths in each planar undulator are different each other. Therefore, proper initial undulator parameter and tapering strength parameter have to be chosen to obtain high power polarized photon beam with fixed wavelength. In this research, method for deciding suitable reverse tapering is presented using simulation results of PAL-XFEL soft X-ray case with 10 GeV electron beam energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)