Status of the PAL-XFEL Construction

0.1-nm Hard X-ray XFEL

Project Period: 2011 ~ 2015

Undulator Hall

- Total Budget: 400 M\$
- 10-GeV Electron Linac (Normal Conducting S-band, 60 Hz)

Pohang Light Source

(3 GeV /400-mA)

Total Length: 1.1 km

Experimental

Heung-Sik Kang, on behalf of PAL-XFEL Team Pohang Accelerator Laboratory, Pohang, South Korea

Outline

- Introduction
- Status of Installation
- Sub-System Preparation
- Commissioning Schedule

Hard X-ray FEL Facilities

	LCLS-1	SACLA	EU-FEL	PAL-XFEL	SwissFEL
Electron Energy, GeV	14	8	17.5	10	5.8
Photon energy, keV	12.4	15	25	12.4	12
Accelerator Type	NCRF (S-band)	NCRF (C-band)	SCRF (L-band)	NCRF (S-band)	NCRF (C-band)
Repetition rate	120	50	500,000	60	100
Undulator	out-of- vacuum, fixed gap	In-vacuum, variable gap	out-of- vacuum, variable gap	out-of- vacuum, variable gap	In-vacuum, variable gap
First lasing	2009	2011	2016	2016	2017
Operation mode	SASE, Self- seeding	SASE, Self- seeding	SASE, Self- seeding	SASE, Self-seeding	SASE, Self-seeding

Building Layout

HX Experimental Hall (60 m)

HX Beamline (45 m)

HX BTL & Undulator (225 m)

SX Experimental Hall (60 m)

SX Beamline (40 m)

SX Undulator (130 m)

Seam

Undulator Lines

		Undulator Line	HX1	SX1
Main parameters		Wavelength [nm]	0.06 ~ 0.6	1 ~ 4.5
e ⁻ Energy	10 GeV	Beam Energy [GeV]	4 ~ 10	3.15
e ⁻ Bunch charge	20-200 pC	Wavelength Tuning [nm]	0.6 ~ 0.1 (energy) 0.1 ~ 0.06 (Gap)	4.5 ~ 3 (Beam energy) 3 ~ 1 (Undulator gap)
Slice emittance Repetition rate	0.4 mm mrad 60 Hz	Undulator Type	Planar variable gap, out-vacuum	Planar + APPLE II variable gap, out-vacuum
Pulse duration SX line switching	5 fs – 100 fs DC (Phase-1)	Undulator Period / Gap [mm]	26 / 8.3	35 / 8.3
	Kicker (Phase-2)	Operation Mode	SASE (2016) Self-Seeding (2017)	SASE

Undulator Lines

Undulator Line	HX1	SX1
Wavelength [nm]	0.06 ~ 0.6	1 ~ 4.5
Beam Energy [GeV]	4 ~ 10	3.15
Wavelength Tuning [nm]	0.6 ~ 0.1 (energy) 0.1 ~ 0.06 (Gap)	4.5 ~ 3 (Beam energy) 3 ~ 1 (Undulator gap)
Undulator Type	Planar variable gap, out-vacuum	Planar + APPLE II variable gap, out-vacuum
Undulator Period / Gap [mm]	26 / 8.3	35 / 8.3
Operation Mode	SASE (2016) Self-Seeding (2017)	SASE

Undulator Layout

PAL-XFEL Layout

PAL-XFEL Layout

Features of PAL-XFEL (1)

- Multiple beamline operation
 - Simultaneous operation of Soft & Hard X-ray Beamline
 - 120 Hz operation in a non-sled mode & Two bunch operation (20 ns separation) → 240 pulses per second
- A very long Undulator Hall (225 m)
 - enough to install 28 undulators (5 m x 28 = 140 m)
 - Suitable for Self-seeding and undulator tapering for TW FEL
 - Able to achieve Photon flux of over 1 x 10¹² photons/pulse at 0.1 nm
- Ultra stable pulse RF system
 - Klystron beam voltage stability : < 30 ppm</p>
- New concepts and Ideas
 - Dechirper for energy chirp control
 - Two diamond crystal holder for self-seeding monochromator

Features of PAL-XFEL (2)

- Multiple beamline operation
 - Simultaneous operation of Soft & Hard X-ray Beamline
 - 120 Hz operation in a non-sled mode & Two bunch operation (20 ns separation)
 → 240 pulses per second
- A very long Undulator Hall (225 m)
 - enough to install 28 undulators (5 m x 28 = 140 m)
 - Suitable for Self-seeding and undulator tapering for TW FEL
 - Able to achieve Photon flux of over 1×10^{12} photons/pulse at 0.1 nm
- Ultra stable pulse RF system
 - Klystron beam voltage stability : < 30 ppm</p>
- New concepts and Ideas
 - Dechirper for energy chirp control
 - Two diamond crystal holder for self-seeding monochromator

Self-Seeding Simulation for PAL-XFEL

Self-seeding + undulator tapering

Features of PAL-XFEL (3)

- Flexibility for multiple beamline operation
 - Simultaneous operation of Soft & Hard X-ray Beamline
 - 120 Hz operation in a non-sled mode & Two bunch operation (20 ns separation)
 → 240 pulses per second
- A very long Undulator Hall (225 m)
 - enough to install 28 undulators (5 m x 28 = 140 m)
 - Suitable for Self-seeding and undulator tapering for TW FEL
 - Able to achieve Photon flux of over 1×10^{12} photons/pulse at 0.1 nm
- Ultra stable pulse RF system
 - Klystron beam voltage stability : < 30 ppm</p>
- New concepts and Ideas
 - Dechirper for energy chirp control
 - Two diamond crystal holder for self-seeding monochromator

Ultra Stable Pulse RF System

Electron Beam Stability Requirements

- Beam energy jitter : < 0.02 %</p>
- Beam arrival time : < 20 fs</p>
- Emittance growth : < 10%</p>
- Beam current change: < 10%</p>

Stability Requirements determined by Start-to-End simulation

	L1	X	L2	L3, L4
RF Phase [degrees]	0.05	0.1	0.05	0.5
RF Amplitude [%]	0.02	0.04	0.02	0.1

- Stability Requirements for RF System
 - S-band RF phase: 0.03 degree
 S-band RF amplitude: 0.02%
 X-band RF phase: 0.06 degree

Features of PAL-XFEL (4)

- Flexibility for multiple beamline operation
 - Simultaneous operation of Soft & Hard X-ray Beamline
 - 120 Hz operation in a non-sled mode & Two bunch operation (20 ns separation)
 → 240 pulses per second
- A very long Undulator Hall (225 m)
 - enough to install 28 undulators (5 m x 28 = 140 m)
 - Suitable for Self-seeding and undulator tapering for TW FEL
 - Able to achieve Photon flux of over 1×10^{12} photons/pulse at 0.1 nm
- Ultra stable pulse RF system
 - Klystron beam voltage stability : < 30 ppm</p>
- New concepts and Ideas
 - Dechirper for energy chirp control
 - Two diamond crystal holder for self-seeding monochromator

Start-to-End Simulation for Soft X-ray FEL Line

SASE Bandwidth vs. Energy Chirp

PAL-XFEL Soft X-ray FEL Line

Heung-Sik Kang hskang@postech.ac.kr

Wakefield Dechirper Chamber - Simulation & Measurement

STATUS OF INSTALLATION

Project Schedule

now

Undulator Install

June 2015 - Dec. 2015

Monthly Installation Plan of the Linac

Undulator Installation Plan

Undulator Installation Plan: Undulator & Vacuum chamber

June 2015

- HX undulator and vacuum chamber will be installed from June 2015.
- It takes two weeks to install 1 set of undulator and chamber

Undulator Installation Plan : Beam dump & Tune-up dump

Aug. 2015

Undulator Installation Plan: Undulator Intersection Components

Sep. 2015

Undulator Installation Plan: Self-seeding section

Oct. 2015

- Self seeding section will be installed in Oct. 2015. (except monochromator)

Undulator Installation Plan

Aerial View of PAL (July 2012)

Aerial View of PAL (July 2013)

Aerial View of PAL (July 2014)

Aerial View of PAL (January 2015)

First Installation of S-band accelerating structures (21 January 2015)

Linac Tunnel

Linac Tunnel

Modulators at Klystron Gallery

Modulators at Klystron Gallery

Hard X-ray Undulator hall

Hard X-ray Experimental Hall

SUB-SYSTEM Preparation **1. LINAC RF**

Classification	Section	K&M	A/S	Energy Doubler	Energy (GeV)
Injector linac		3	2	0	0.139
Hard X-ray main linac	L1	2	4	0	0.33
	L2	10	40	10	2.52
	L3A	2	8	2	3.0
	L3B	2	8	2	3.45
	L4	27	108	27	10
Soft X-ray linac		1	4	1	3~3.5
Deflector (S-band)	L1, L3	3	4	0	
Linearizer (X-band)	L1	1	1	0	
Total No.		51	180	42	

Linac RF Stability

Since the intra-pulse feedback is not feasible in the RF of the normal conducting Linac, RF stability is solely determined by klystron Voltage stability

31

Klystron beam voltage stability [ppm] 55

Ultra-Stable Modulator

			Unit	Value
		RF output power	MW	80
		Max. peak power	MW	200
		Beam voltage	kV	400
		Beam current	Α	500
		Beam pulse width	μs	8
		Repetition rate max.	Hz	60
		Pulse transformer turn ratio		17
File Edit Vertical Horiz/Acq Trg Display Cursors Measure Mask Math MyScope Analyze Utilities Help 🔽		Perveance	μρ	2
rms Stability : 17.1 ppm				
Peak-to-peak Stability : 120.0 ppm				
	Col	laborated with tw	O KOre	ean
	con	npanies		
	•	POSCO-ICT		
	•	Dawon-Svs		
Com 1.0mV/div 50Ω ¶ _W /28.0M A com f / 1.55V 40.0ms/div 2.565/s	•	Bawen Cyc		
Value Mean Min Max St Dev Count Info Std Dev 62.21µV 62.002233µ 0.0 63.01µ 48.49n 5.416 k 5.413 acqs RL:1.0k Pk-Pk* 440.0µV 440.0µU 893.3z 5.416 k 5.413 acqs RL:1.0k				

S-band Accelerating Structure

- Accelerating gradient of 27 MV/m
- Qausi-symmetric coupler with racetrack shape
- Collaborated with a Korean company
 Vitzro-Tech, Korea
- 120 modules made by MHI, Japan

S-band Energy Doubler

 Two-hole coupling to withstand 380 MW peak RF power

* Collaborated with a Korean company : Vitzro-Tech, Korea

LLRF controller

LLRF

- 10 Channels for pulse measurement
- 2 Channels for pulse generation
- IQ modulation & demodulation
- Arbitrary pulse-shaping function
- Klystron beam V & I measurement
- IPC based computation system
- Beam synchronous acquisition

Solid-State Amplifier

- Pulsed output power
- Power control : 600~900W
 - * Collaborated with a Korean company : MOBIIS, Korea

RF Stability Performance

- Using a Modulator, E37320 Klystron, SLED & LLRF for PAL-XFEL
- RMS Stability : Amplitude~0.02%, Phase~0.03° (for Klystron FWD)

 \aleph averaged for 500ns within pulse

SUB-SYSTEM Preparation **2. UNDULATOR**

PAL-XFEL Undulator Error Budget for 0.1 nm

Parameter	σ	P_i/P_0	tolerance
Launch Angle, µrad	1.73	98 %	0.35
Cell Phase, degree	55.6	99.6 %	5.0
Phase Shift, degree	55.6	99.6 %	5.0
Break Length, mm	11.8	99.9 %	0.5
Δ K/K (gap control, 1 μ m)	0.00053	95 %	0.00017
Quad position, µm	3.63	95 %	1.2
Seg. Ver. Pos. , µm	0.0183 mm ²	98%	61
Jaw Pitch, µrad	60.8	99.5 %	6.1

Undulator Stability Requirement

- Field accuracy: < 2 x 10-4
- Gap setting accuracy: < 1 um

Prototype Undulator

- EU-XFEL undulator design is benchmarked. A MOU to use the EU-XFEL design is agreed in June 2011 between PAL and EU-XFEL.
- PAL modified the design including the new magnetic design, EPICS IOC, and updated tolerances reflecting new parameters.
- A fully assembled HXU prototype was delivered in Dec 2012 and measured at the undulator measurement lab.

Undulator Measurement Room

Prototype Undulator under field measurement

Field & Gap Reproducibility Errors

Field Errors

Gap Reproducibility Errors

- The peak fields from 5 measurements are overlapped.
- B errors are about ±1.0 G.
- Orbit error from the measurements is less than 1 um.

- The peak fields from 5 measurements are overlapped.
 Between each measurement, gap is opened to 100 mm and closed to measurement gap.
- 1.5 Gauss difference translates to 1.0 µm gap error.

Measured Optical Phase Analyzed Using B2E

- Initial optical phase errors were very large because of girder deformations about 50 $\mu m.$
- The optical phase errors is corrected to about 3.0 degree (rms) at the tuning gap.
- In production phase, we expect 1 day for vertical orbit correction, 1 day for correction of dominant quad components, 3 days for the phase/horizontal orbit tuning.

First Undulator under field measurement

Symbol	Unit	Nominal value
E	GeV	10.000
g	mm	8.30
λ _u	mm	26.0
L _{und}	m	5.0
λ _r	nm	0.1
B_{eff}	Tesla	0.8124
K		1.9727
Optical phase error	degree	less than 5.0

SUB-SYSTEM Preparation

3. INJECTOR & INJECTOR TEST FACILITY

Injector Test Facility for PAL-XFEL

ITF Modulator / Klystron

ITF Tunnel

Two candidate designs for the PAL-XFEL gun

PAL-XFEL baseline gun : dual-coupler gun with additional two-holes to reduce quadrupole field

PRST AB 14, 104203 (2011)

Emittance growth due to multipole transverse magnetic modes in an rf gun

Alternative gun design :

fully-symmetric coaxial coupler and cathode plug.

Gun Part of Injector

Laser Beam Profile

1.0

On

Longitudinal Evolution of Transverse Profiles

- History of Projected Emittances (95%) at 200 pC

Feb-'13 May-'13 Aug-'13 Nov-'13 Feb-'14 May-'14 Aug-'14

Effect of synchronization between RF and Laser

4. SELF-SEEDING MOCHROMATOR

SUB-SYSTEM Preparation

Hard x-ray self-seeding @ LCLS

PAL-XFEL self-seeding collaboration project

- PAL-XFEL self-seeding team <u>made a contract with ANL</u> to develop a novel self-seeding monochromator for PAL-XFEL.
- Our self-seeding monochromator is based on the LCLS design.
- Two diamond crystals with (400) and (220) orientations will be installed into single chamber.
- The monochromator is designed to cover <u>the photon energy from 5 keV to</u> <u>10 keV</u>.
- PAL and ANL focus on development of <u>all diamond based crystal holder</u>. The new holder might be resistive to thermal instability.
- The monochromator will be ready for installation in PAL-XFEL in Oct.
 <u>2016</u>.

Self-Seeding Monochromator

Monochromator chamber

Diamond crystals; diffraction angle dependence

<u>C(400), d=100 µm, Photon energy: 7~10 keV</u>

 T_0 ; characteristic time, ΔE_0 ; energy bandwidth $\Delta \theta_{30\%}$; admissible strain, t_s = time delay, x_0 = spatial offset

<u>C(220)</u>, d=30 μ m, Photon energy: 5~7 keV \bullet 5 keV. $\theta = 79.5^{\circ}$ 5.5 keV, $\theta = 63.3^{\circ}$ 6 keV, $\theta = 55.0^{\circ}$ 7 keV, $\theta = 44.6^{\circ}$ $T_0 = 0.86 \text{ fs}$ $T_0 = 0.71 \text{ fs}$ $T_0 = 0.61 \text{ fs}$ $T_0 = 0.78 \text{ fs}$ $\Delta E_0 = 0.24 \text{ eV}$ $\Delta E_0 = 0.27 \text{ eV}$ $\Delta E_0 = 0.29 \text{ eV}$ $\Delta E_0 = 0.34 \text{ eV}$ $\Delta \theta_{nor} = 78.87 \ \mu rad$ $\Delta \theta_{nor} = 29.24 \ \mu rad$ $\Delta \theta_{30\%} = 20.97 \ \mu rad$ $\Delta \theta_{nor} = 14.48 \ \mu rad$ $t_s=22.3$ fs, $x_0=1.2 \ \mu m$ $t_s=20.2$ fs, $x_0=3.0 \ \mu m$ $t_s = 18.6 \text{ fs}, x_0 = 3.9 \ \mu \text{m}$ $t_s = 15.9 \text{ fs}, x_0 = 4.8 \ \mu \text{m}$

PR STAB 15. (2012) 050706, PR STAB 15 (2012) 100702.

Courtesy of Yuri Shvyd'ko

Diamond Crystal Holder

Diamond Crystal holder design for LCLS Diamond Crystal holder design for PAL-XFEL

SUB-SYSTEM Preparation

5. CONTROL SYSTEM

Diagnostics and Control

- Event timing system delivered from SLAC was successfully tested at ITF in April 2014
- Stripline BPM control system
 - mTCA BPM control system successfully commissioned in June 2014 : 3 4 μm at 200pC, 12 μm at 10pC
 - 140 Stripline BPM control system (mTCA based) contracted with SLAC in October 2014
 - 144 RTMs & 17 EVR fan-out module : SLAC
 - mTCA Crate, CPU, power module, AMC module : PAL
 - 155 stripline BPM pick-up was contracted with a Korean company
- Cavity BPM
 - 100 cavity BPMs contracted with a company in November 2014
 - Cavity BPM electronics is being tested at SLAC to be contracted in early 2015.
- Main control system (operator interface, control servers, and DB) is contracted with COSY-Lab.

CBPM: LCLS Beam Test (Nov. 2013)

CBPM: LCLS Beam Test (Nov. 2013)

RF timing distribution system

Temperature stabilized duct

Install and FEL Commissioning

 Linac RF conditioning / Injector commissioning 	2015. 10 ~ 2015. 12
 1st FEL commissioning for 0.3 nm HX @10 Hz 	2016. 01 ~ 2016. 06
• 2 nd FEL commissioning for 0.1 nm HX @10 Hz	2016. 09 ~ 2016. 12

	2015											2016												
	1	2	3	4	5	6	7	8	9	0	Ν	D	1	2	3	4	5	6	7	8	9	0	N	D
ITF operation								•																
Injector install																								
Linac install																								
Undulator Install					•							-												
Control system test																								
Linac RF conditioning												-												
Injector commissioning												-												
Linac commissioning																-								
0.3 nm FEL commission															-			-	•					
0.1 nm FEL commission																								

HX undulator hall should be accessible during the Linac RF conditioning

PAL We hope A successful FEL commissioning in 2016!! Thank you for your attention