Author: Kishek, R.A.
Paper Title Page
MOPMA029 Experiences Simulating Nonlinear Integrable Optics 611
 
  • S.D. Webb, D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • R.A. Kishek
    UMD, College Park, Maryland, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0011340.
With increasing interest in the nonlinear integrable optics, it is important that early experiences with simulating the lattices be shared to save time and point out potential difficulties in the simulations. We present here some details of simulating the nonlinear integrable lattices. We discuss correctly implementing and testing the elliptic element kicks, and the limits of the thin lens approximation. We also discuss generating a properly matched bunch in the transverse phase space, and how to analyze the resulting computational data from simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA044 Barrier Shock Compression with Longitudinal Space Charge 646
 
  • B. Beaudoin, I. Haber, R.A. Kishek
    UMD, College Park, Maryland, USA
 
  Funding: This work is supported by the US Dept. of Energy, Office of High Energy Physics.
Synchrotrons and storage rings routinely employ RF barrier buckets as a means of accumulating charge to increase the peak intensity and preserve longitudinal emittance while minimizing emittance growth [1-3]. This was shown in the main injector and recycler at Fermilab as well as the SIS-18 at GSI Helmholtz center for heavy ion research. The RF cavities typically used are ferrite loaded magnetic alloys with low Q to maximize bandwidth and generate single pulses, either as delta functions, triangular or half/full period sine waves. The University of Maryland Electron Ring (UMER) group is studying a novel scheme of bunch compression in the presence of longitudinal space charge. It has been analytically shown through 1-D computations that the presence of space-charge considerably improves the efficiency of the barrier compression by taking advantage of the shock-front that launches when the barrier moves into a space-charge dominated beam. In this paper, we summarize the initial results of the study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)