Author: Karataev, P.
Paper Title Page
MOPTY080 A Multi-band Single Shot Spectrometer for Observation of mm-Wave Bursts at Diamond Light Source 1126
 
  • A. Finn, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  Micro-bunch instabilities (MBI) have been detected at many light sources across the world. The radiation bursts produced as a result of this instability occur in the millimetre wavelength regime. In order to understand more about the mechanism of MBI and improve the accuracy of simulations, more information is needed about the dynamics and spectral content of the radiation. A single shot spectrometer has therefore been developed to investigate this instability at Diamond Light Source. Due to their low noise, ultra-fast response and excellent sensitivity, Schottky detector diodes are employed. Currently, seven Schottky detectors are in place covering a range of 33-750 GHz. Unlike previous measurements at Diamond, each of the Schottky detectors has been characterised thus allowing the results obtained to be more easily compared to simulations. In this paper, we present the calibration of each Schottky detector in the spectrometer, the first results of tests with beam, as well as future plans for the spectrometer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA070 CST Simulations of THz Cherenkov Smith-purcell Radiation from Corrugated Capillary 1594
 
  • K. Lekomtsev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • A. Ponomarenko, A.A. Tishchenko
    MEPhI, Moscow, Russia
 
  Recent advances in generation of femtosecond pre-bunched beams have a potential to generate coherent THz radiation occurring via combination of Smith-Purcell radiation (SPR) and Cherenkov radiation (ChR) generated in a corrugated capillary. This mechanism was studied theoretically *. LUCX accelerator at High Energy Accelerator Research Organisation (KEK) has been upgraded by introducing fs Ti:Sa laser system and it is currently generating short tens of fs electron bunches **. In this report we present EM simulations of Ch.SPR generated in a corrugated channel in infinite dielectric and in a dielectric corrugated capillary. CST PIC solver is used as a simulation tool. It was earlier used for simulation of Transition radiation ***. Intensity dependencies of ChR and SPR peaks as functions of the capillary radius and the corrugation depth are compared with the theoretical investigation *. Output of THz radiation from the dielectric capillary with a radiation reflector is simulated.
* A.A. Ponomarenko et. al, NIMB 309 (2013) 223-226.
** M. Fukuda et. al, NIMA 637 (2011) S67.
*** K.V. Lekomtsev et. al, J. Phys.: Conf. Ser. 517, (2014) 012016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI003 Laserwire Emittance Scanner at CERN Linac 4 1146
 
  • K.O. Kruchinin, G.E. Boorman, A. Bosco, S.M. Gibson, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • E. Bravin, T. Hofmann, U. Raich, F. Roncarolo, F. Zocca
    CERN, Geneva, Switzerland
  • A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Linac 4 presently under construction at CERN is designed to replace the existing 50 MeV Linac 2 in the LHC injector chain and will accelerate the beam of high current negative hydrogen ions to 160 MeV. During the commissioning a laserwire emittance scanner has been installed allowing noninvasive measuring of the emittance at 3 MeV and 12 MeV setups. A low power infrared fibre coupled laser was focused in the interaction region down to ~150 um and collided with the ion beam neutralising negative ions. At each transverse laser position with respect to the ion beam the angular distribution of the neutral particle beamlets was recorded by scanning a diamond detector across the beamlet at a certain distance from the IP while the main beam of the H ions was deflected using dipole magnet installed upstream the detector. Measuring the profile of the beamlet by scanning the laser across the beam allows to directly measure the transverse phase-space distribution and reconstruct the transverse beam emittance. In this report we will describe the analysis of the data collected during the 3 MeV and 12 MeV operation of the Linac 4. We will discuss the hardware status and future plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)