Author: Hartung, W.
Paper Title Page
MOPMA056 Measurement and Modeling of Single Bunch Wake Field Effects in CESR 681
 
  • J.R. Calvey, M.G. Billing, W. Hartung, J.D. Perrin, D. L. Rubin, D. Sagan, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by NSF PHY-1416318 and NSF DMR 1332208. This research used the National Energy Research Scientific Computing Center, which is supported by DOE Contract No. DE-AC02-05CH11231.
Short-range wake fields have been incorporated into a Bmad-based particle tracking code in order to assess their contribution to current-dependent emittance growth, tune shift, and single bunch instabilities. The wakes are computed for CESR vacuum components using the T3P modeling software. Simulation results are compared with measurements of bunch length, vertical beam size, and coherent tune shift. Additionally, we use insertable scrapers to vary the transverse wake and measure the effect on the beam. We show that a vertical emittance increase at high current may be due to a transverse monopole wake, originating in the lump pump slots throughout CESR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)