Author: Gonin, I.V.
Paper Title Page
WEPTY017 Development of 650 MHz β=0.9 5-cell Elliptical Cavities for PIP-II 3296
 
  • M.H. Awida, M.H. Foley, I.V. Gonin, C.J. Grimm, T.N. Khabiboulline, A. Lunin, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  5-cell 650 MHz elliptical cavities are being developed for the Proton Improvement Plan II (PIP-II) of Fermilab. The cavities are designed to accelerate protons of relative group velocity β=0.9 at the high energy part of the linear particle accelerator. In this paper, we report the status of these cavities and summarize the results of the quality control measurements performed on four initial prototypes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY018 Analysis of a Quasi-waveguide Multicell Resonator for SPX 3299
 
  • M.H. Awida, I.V. Gonin, T.N. Khabiboulline, A. Lunin, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • A. Zholents
    ANL, Argonne, Ilinois, USA
 
  A compact deflecting cavity is needed for the Short Pulse X-rays (SPX) at the Advanced Photon Source (APS) of Argonne national laboratory. The deflecting cavity has to quite efficient providing a 2 MV kick voltage and satisfying stringent requirements on aperture size and total cavity length. Meanwhile, the cavity should allow operation up to 100 mT peak surface magnetic field before quenching. In this paper, we report on the latest analysis carried out on the cavity structure to investigate frequency sensitivity to pressure fluctuations, frequency sensitivity to tuning forces, modal frequency, and wakefield losses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY035 Design and Test of the Compact Tuner for Narrow Bandwidth SRF Cavities 3352
 
  • Y.M. Pischalnikov, E. Borissov, I.V. Gonin, J.P. Holzbauer, T.N. Khabiboulline, W. Schappert, S.J. Smith, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under Contract N. DE-AC02-07CH11359 with U.S. Department of Energy.
The design of the compact tuner for 1.3 GHz 9-cell elliptical cavity will be presented. This compact tuner is designed for future accelerators that will operate in CW and pulsed RF-power modes. The major design features include highly reliable active components (electromechanical actuators and piezo-actuators) and the ability to replace tuner active components through designated ports in the cryomodule vacuum vessel. Results of tuner testing with cold cavity will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI007 TTF3 Power Coupler Thermal Analysis for LCLS-II CW Operation 3503
 
  • L. Xiao, C. Adolphsen, Z. Li, C.D. Nantista, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • I.V. Gonin, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  The TESLA 9-cell SRF cavity design has been adopted for use in the LCLS-II SRF Linac. Its TTF3 coaxial Fundamental Power Coupler (FPC), developed for pulsed operation in the European XFEL and ILC, requires modest changes to make it suitable for LCLS-II CW operation, in which it must be able to handle up to 7 kW of average power with the maximum temperature rise not to exceed 150 C. In order to improve TTF3 FPC cooling, an increased copper plating thickness will be used on the inner and outer conductor stainless steel RF surfaces. Fully 3D FPC thermal analysis with copper plating was performed using the SLAC developed parallel finite element code suite ACE3P with integrated electromagnetic, thermal and mechanical multi-physics simulation capabilities. In this paper, we present TTF3 FPC thermal analysis simulation results obtained using ACE3P as well as a comparison with measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)