Author: Goddard, B.
Paper Title Page
TUPTY033 Civil Engineering Optimisation Tool for the Study of CERN's Future Circular Colliders 2079
 
  • C. Cook, B. Goddard, P. Lebrun, J.A. Osborne, Y. Robert
    CERN, Geneva, Switzerland
 
  Funding: CERN
The feasibility of Future Circular Colliders (FCC), possible successors to the Large Hadron Collider (LHC), is currently under investigation at CERN. This paper describes how CERN’s civil engineering team are utilising an interactive tool containing a 3D geological model of the Geneva basin. This tool will be used to investigate the optimal position of the proposed 80km-100km tunnel. The benefits of using digital modelling during the feasibility stage are discussed and some early results of the process are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY039 LHC Transfer Lines and Injection Tests for Run 2 2098
 
  • C. Bracco, J.L. Abelleira, R. Alemany-Fernández, M.J. Barnes, W. Bartmann, E. Carlier, L.N. Drøsdal, M.A. Fraser, K. Fuchsberger, B. Goddard, J. Jentzsch, V. Kain, N. Magnin, M. Meddahi, J.S. Schmidt, L.S. Stoel, J.A. Uythoven, F.M. Velotti, J. Wenninger
    CERN, Geneva, Switzerland
 
  The transfer lines for both rings of the LHC were successfully re-commissioned with beam in preparation for the start-up of Run 2. This paper presents an overview of the transfer line and sector tests performed to bring the LHC back into operation after a two-year period of shutdown for consolidation and upgrade. The tests enabled the debugging of critical software and hardware systems and validated changes made to the transfer and injection systems. The beam-based measurements carried out to validate the optics and machine configuration are summarised along with the performance of the hardware systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY049 Protection of Superconducting Magnets in Case of Accidental Beam Losses during HL-LHC Injection 2128
 
  • A. Lechner, M.J. Barnes, C. Bracco, B. Goddard, F.L. Maciariello, A. Perillo Marcone, N.V. Shetty, G.E. Steele, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  Funding: Research supported by the High Luminosity LHC project.
The LHC injection regions accommodate a system of beam-intercepting devices which protect superconducting magnets and other accelerator components in case of mis-steered injected beam or accidentally kicked stored beam, e.g. due to injection kicker or timing malfunctions. The brightness and intensity increase required by the High Luminosity (HL) upgrade of the LHC necessitates a redesign of some devices to improve their robustness and to reduce the leakage of secondary particle showers to downstream magnets. In this paper, we review possible failure scenarios and we quantify the energy deposition in superconducting coils by means of FLUKA shower calculations. Conceptual design studies for the new protection system are presented, with the main focus on the primary injection protection absorber (TDI) and the adjacent mask (TCDD).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY050 Considerations for the Beam Dump System of a 100 TeV Centre-of-mass FCC hh Collider 2132
 
  • T. Kramer, M.G. Atanasov, M.J. Barnes, W. Bartmann, J. Borburgh, E. Carlier, F. Cerutti, L. Ducimetière, B. Goddard, A. Lechner, R. Losito, G.E. Steele, L.S. Stoel, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  A 100 TeV centre-of-mass energy frontier proton collider in a new tunnel of 80–100 km circumference is a central part of CERN’s Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam dump system, which for each ring will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule, more than an order of magnitude higher than planned for HL-LHC. The transverse proton beam energy densities are even more extreme, a factor of 100 above that of the presently operating LHC. The requirements for the beam dump subsystems are outlined, and the present technological limitations are described. First concepts for the beam dump system are presented and the feasibility is discussed, highlighting in particular the areas in which major technological progress will be needed. The potential implications on the overall machine and other key subsystems are described, including constraints on filling patterns, interlocking, beam intercepting devices and insertion design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY051 Injection Protection Upgrade for the HL-LHC 2136
 
  • J.A. Uythoven, N. Biancacci, C. Bracco, L. Gentini, B. Goddard, A. Lechner, F.L. Maciariello, A. Perillo Marcone, B. Salvant, N.V. Shetty, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
  • O. Frasciello, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY062 FCC-hh Hadron Collider - Parameter Scenarios and Staging Options 2173
 
  • M. Benedikt, B. Goddard, D. Schulte, F. Zimmermann
    CERN, Geneva, Switzerland
  • M.J. Syphers
    NSCL, East Lansing, Michigan, USA
  • M.J. Syphers
    Fermilab, Batavia, Illinois, USA
 
  FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb-1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual parameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA039 The AWAKE Electron Primary Beam Line 2584
 
  • J.S. Schmidt, J. Bauche, B. Biskup, C. Bracco, E. Bravin, S. Döbert, M.A. Fraser, B. Goddard, E. Gschwendtner, L.K. Jensen, O.R. Jones, S. Mazzoni, M. Meddahi, A.V. Petrenko, F.M. Velotti, A.S. Vorozhtsov
    CERN, Geneva, Switzerland
  • U. Dorda
    DESY, Hamburg, Germany
  • L. Merminga, V.A. Verzilov
    TRIUMF, Vancouver, Canada
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration. The proton beam from the SPS will be used in order to drive wakefields in a 10 m long Rb plasma cell. In the first phase of this experiment, scheduled in 2016, the self-modulation of the proton beam in the plasma will be studied in detail, while in the second phase an external electron beam will be injected into the plasma wakefield to probe the acceleration process. The installation of AWAKE in the former CNGS experimental area and the required optics flexibility define the tight boundary conditions to be fulfilled by the electron beam line design. The transport of low energy (10-20 MeV) bunches of 1.25·109 electrons and the synchronous copropagation with much higher intensity proton bunches (3E11) determines several technological and operational challenges for the magnets and the beam diagnostics. The current status of the electron line layout and the associated equipments are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF082 Considerations on the Fast Pulsed Magnet Systems for the 2 GeV Beam Transfer from the CERN PSB to PS 3876
 
  • T. Kramer, J.L. Abelleira, W. Bartmann, J. Borburgh, L. Ducimetière, L.M.C. Feliciano, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Within the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV proton beam energy upgrade. The paper describes considerations on the PSB extraction and recombination kickers as well as on the injection kicker(s) into the PS. Different schemes of an injection into the PS have been outlined in the past and are reviewed under the aspect of individual transfer kicker rise and fall time performances. Recent measurements on the recombination kickers are presented and subsequently homogenous rise and fall time requirements in the whole PSB to PS transfer chain are presented. The baseline option for the PS injection kicker(s) is outlined and compared to the previously presented concepts.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF089 Beam Transfer to the FCC-hh Collider from a 3.3 TeV Booster in the LHC Tunnel 3901
 
  • W. Bartmann, M.J. Barnes, M.A. Fraser, B. Goddard, W. Herr, J. Holma, V. Kain, T. Kramer, M. Meddahi, A. Milanese, R. Ostojić, L.S. Stoel, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  Transfer of the high brightness 3.3 TeV proton beams from the High Energy Booster (HEB) to the 100 TeV centre-of-mass proton collider in a new tunnel of 80–100 km circumference will be a major challenge. The extremely high stored beam energy means that machine protection considerations will constrain the functional design of the transfer, for instance in the amount of beam transferred, the kicker rise and fall times and hence the collider filling pattern. In addition the transfer lines may need dedicated insertions for passive protection devices. The requirements and constraints are described, and a first concept for the 3.3 TeV beam transfer between the machines is outlined. The resulting implications on the parameters and design of the various kicker systems are explored, in the context of the available technology. The general features of the transfer lines between the machines are described, with the expected constraints on the collider layout and insertion lengths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF091 Detailed Studies of Beam Induced Scrubbing in the CERN-SPS 3908
 
  • G. Iadarola, H. Bartosik, T. Bohl, B. Goddard, G. Kotzian, K.S.B. Li, L. Mether, G. Rumolo, M. Schenk, E.N. Shaposhnikova, M. Taborelli
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade (LIU) program, it is foreseen to take all the necessary measures to avoid electron cloud effects in the CERN-SPS. This can be achieved by either relying on beam induced scrubbing or by coating the vacuum chambers with intrinsically low Secondary Electron Yield (SEY) material over a large fraction of the ring. To clearly establish the potential of beam induced scrubbing, and to eventually decide between the two above options, an extensive scrubbing campaign is taking place at the SPS. Ten days in 2014 and two full weeks in 2015 are devoted to machine scrubbing and scrubbing qualification studies. This paper summarizes the main findings in terms of scrubbing efficiency and reach so far, addressing also the option of using a special doublet beam and its implication for LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF093 Status of the LHC Injectors Upgrade (LIU) Project at CERN 3915
 
  • M. Meddahi, J. Coupard, H. Damerau, A. Funken, S.S. Gilardoni, B. Goddard, K. Hanke, L. Kobzeva, A.M. Lombardi, D. Manglunki, S. Mataguez, B. Mikulec, G. Rumolo, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  CERN is currently carrying out an ambitious improvement programme of the full LHC Injectors chain in order to enable the delivery of beams with the challenging HL-LHC parameters. The LHC Injectors Upgrade project coordinates this massive upgrade program, and covers a new linac (Linac4 project) as well as upgrades to the Proton Synchrotron Booster, the Proton Synchrotron and Super Proton Synchrotron. The heavy ion injector chain is also included, adding the Linac3 and Low Energy Ion Ring to the list of accelerators concerned. The performance objectives and roadmap of the main upgrades will be presented, including the work status and outlook. The machine studies and milestones during LHC Run 2 will be discussed and a preliminary Long Shutdown 2 installation planning given. Finally, for the LHC Run 3, the beam performance across the full injector chain after all the upgrades will be estimated and the required commissioning stages outlined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF094 Possible Reuse of the LHC as a 3.3 TeV High Energy Booster for Hadron Injection into the FCC-hh Collider 3919
 
  • B. Goddard, W. Bartmann, M. Benedikt, W. Herr, M. Lamont, P. Lebrun, M. Meddahi, A. Milanese, M. Solfaroli Camillocci, L.S. Stoel
    CERN, Geneva, Switzerland
 
  One option for the injector into a 100 TeV centre-of-mass energy frontier proton collider (FCC-hh) in a new tunnel of 80–100 km circumference is to reuse a suitably modified LHC as 3.3 TeV High Energy Booster (HEB). The changes that would be required to the existing LHC insertions are described, including the types and numbers of new magnets and circuits. The limitations on the maximum LHC ramp rate and minimum cycle time discussed. The key question of the minimum FCC filling time achievable with technically possible upgrades is examined, together with the issues of decommissioning for the elements which would need to be removed from the machine. The potential performance reach of the modified LHC as 3.3 TeV HEB is quantified, and implications for FCC-hh discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF096 Origin of the Damage to the Internal High Energy Beam Dump in the CERN SPS 3927
 
  • V. Kain, K. Cornelis, B. Goddard, M. Lamont, I.V. Leitao, R. Losito, C. Maglioni, M. Meddahi, F. Pasdeloup, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The high energy beam dump in the SPS has to deal with beams from 105 to 450 GeV/c and intensities of up to 4 ×1013 protons. An inspection during the last shutdown revealed significant damage to the Al section of the dump block. This paper summarizes the results of the analysis revealing the most likely cause of the damage to the beam dump. The implications for future SPS operation will also be briefly discussed, together with the short-term solution put in place.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF097 Feasibility Study of a New SPS Beam Dump System 3930
 
  • F.M. Velotti, J.L. Abelleira, M.J. Barnes, C. Bracco, E. Carlier, F. Cerutti, K. Cornelis, R. Folch, B. Goddard, V. Kain, M. Meddahi, R.F. Morton, J.A. Osborne, F. Pasdeloup, V. Senaj, G.E. Steele, J.A. Uythoven, H. Vincke
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron (SPS) presently uses an internal beam dump system with two separate blocks to cleanly dispose of low and high energy beams. In view of the increased beam power and brightness needed for the LHC Injector Upgrade project for High Luminosity LHC (HL-LHC), the performance of this internal beam dump system has been reviewed for future operation. Different possible upgrades of the beam dumping system have been investigated. The initially considered solution for the SPS Beam Dump System is to design a new, dedicated external system, with a dump block in a shielded cavern separated from the machine ring. Unfortunately this solution is not feasible with the present technology. In this paper, the design requirements and the possible solutions are investigated, including considering a new internal beam dump in the Long Straight Section 5 (LSS5).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF098 SPS-to-LHC Transfer Lines Loss Map Generation Using PyCollimate 3934
 
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
  • W. Bartmann, C. Bracco, M.A. Fraser, B. Goddard, V. Kain, M. Meddahi, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The Transfer Lines (TL) linking the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC) are both equipped with a complete collimation system to protect the LHC against mis-steered beams. During the setting up of these collimators, their gaps are positioned to nominal values and the phase-space coverage of the whole system is checked using a manual validation procedure. In order to perform this setting-up more efficiently and more reliably, the simulated loss maps of the TLs will be used to validate the collimator positions and settings. In this paper, the simulation procedure for the generation of TL loss maps is described, and a detailed overview of the new scattering routine (pycollimate) is given. Finally, the results of simulations benchmark with another scattering routine are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF099 Upgrade of the SPS Ion Injection System 3938
 
  • J.A. Uythoven, J. Borburgh, E. Bravin, S. Burger, E. Carlier, J.-M. Cravero, L. Ducimetière, S.S. Gilardoni, B. Goddard, J. Hansen, E.B. Holzer, M. Hourican, T. Kramer, F.L. Maciariello, D. Manglunki, F.-X. Nuiry, A. Perillo Marcone, G.E. Steele, F.M. Velotti, H. Vincke
    CERN, Geneva, Switzerland
 
  As part of the LHC Injectors Upgrade Project (LIU) the injection system into the SPS will be upgraded for the use with ions. The changes will include the addition of a Pulse Forming Line parallel to the existing PFN to power the kicker magnets MKP-S. With the PFL a reduced magnetic field rise time of 100 ns should be reached. The missing deflection strength will be given by two new septum magnets MSI-V, to be installed between the existing septum MSI and the kickers MKP-S. A dedicated ion dump will be installed downstream of the injection elements. The parameter lists of the elements and studies concerning emittance blow-up coming from the injection system are presented. The feasibility of the 100 ns kicker rise time and the small ripple of the septum power converter are presented. Material studies of the ion dump are presented together with the radiation impact.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)