Author: Droba, M.
Paper Title Page
MOPWA036 Status of Injection Studies into the Figure-8 Storage Ring 187
 
  • J.F. Wagner, A. Ates, M. Droba, O. Meusel, H. Niebuhr, D. Noll, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  The ongoing investigations on the design of the Figure-8 Storage Ring* at Frankfurt University focus on the beam injection. The research includes simulations as well as a scaled down experiment. The studies for an optimized adiabatic magnetic injection channel, starting from a moderate magnetic field up to a maximum of 6 Tesla, with a realistic field model of toroidal coils due to beam dynamics with space charge will be shown. For the envisaged ExB kicker system the simulations deal with beam potential constraints and a multi-turn injection concept in combination with an adiabatic magnetic compression. To investigate the concept of the beam injection into a toroidal magnetic field, a scaled down room temperature experiment is implemented at the university. It is composed of two 30 degree toroidal segments, two volume ion sources, two solenoids and two different types of beam detectors. The experiment is used to investigate the beam transport and dynamics of the laterally injected and “circulating” beam through the magnetic configuration. To set up the injection experiment, theoretical calculations and beam simulations with bender** are used.
* M. Droba et al., Proc. of IPAC'14, Dresden, Germany, TUPRO045
** D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C.Wiesner, Proc. of HB2014, East Lansing, USA, WEO4LR02
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB1 FRANZ and Small-Scale Accelerator-Driven Neutron Sources 1276
 
  • C. Wiesner, S.M. Alzubaidi, M. Droba, M. Heilmann, O. Hinrichs, B. Klump, O. Meusel, D. Noll, O. Payir, H. Podlech, U. Ratzinger, A. Schempp, S. Schmidt, P.P. Schneider, M. Schwarz, W. Schweizer, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
  • R. Reifarth
    IKF, Frankfurt-am-Main, Germany
 
  This paper gives an overview of the opportunities and challenges of high-intensity, low-energy light-ion accelerators for neutron production. Applications of this technology range from the study of stellar nucleosynthesis and astrophysical phenomena to medical applications such as Boron neutron capture therapy (BNCT). The paper includes details of the FRANZ facility, under development at Frankfurt University.  
slides icon Slides TUXB1 [3.514 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF023 Massless Beam Separation System for Intense Ion Beams 3736
 
  • O. Payir, M. Droba, O. Meusel, D. Noll, U. Ratzinger, P.P. Schneider, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The ExB chopper* in the Low Energy Beam Transport (LEBT) section of the accelerator-driven neutron source FRANZ** will form the required pulses with a repetition rate of 257 kHz out of the primary 120 keV, 50 mA DC proton beam. A following beam separation system will extract the deflected beam out of the beamline and minimize the thermal load by beam losses in the vacuum chamber. To further avoid an uncontrolled production of secondary particles, a novel massless septum system is designed for the beam separation. The septum system consists of a static C-magnet with optimized pole shapes, which will extract the beam with minimal losses, and a magnetic shielding tube, which will shield the transmitted pulsed beam from the fringing field of the dipole. The magnetic field and the beam transport properties of the system were numerically investigated. A main deflection field of about 250 mT was achieved, whereas the fringing field was reduced to below 0.3 mT on the beam axis at 60 mm distance from the dipole. With this settings, the beam was numerically transported through the system with minimal emittance growth. Manufacturing of the septum system has started.
* Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014.
** Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF024 LEBT Dynamics and RFQ Injection 3739
 
  • P.P. Schneider, M. Droba, O. Meusel, H. Niebuhr, D. Noll, O. Payir, H. Podlech, A. Schempp, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  The Low Energy Beam Transport (LEBT) section at the accelerator-driven neutron source FRANZ* consists of four solenoids, two of which match the primary proton beam into the chopper. The remaining two solenoids are intended to prepare the beam for injection into the RFQ. In the first commissioning phase, the LEBT successfully transported a 14 keV He beam at low intensities**. In the current commissioning phase, the beam energy is increased to the RFQ injection energy of 120 keV. In the upcoming step, the intensity will be increased from 2 mA to 50 mA. Beam dynamics calculations include effects of different source emittances, position and angle offsets and the effects of space charge compensation levels. In addition, the behavior of the undesired hydrogen fractions, H2+ and H3+, and their influence on the performance within the RFQ is simulated.
* Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012.
** Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)