Author: De Gersem, H.
Paper Title Page
MOPWA031 A New Approach for Resistive Wakefield Calculations in Time Domain 168
 
  • A.V. Tsakanian, H. De Gersem, E. Gjonaj, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Dohlus, I. Zagorodnov
    DESY, Hamburg, Germany
 
  We report on a new numerical technique for the computation of the wakefields excited by ultra-short bunches in the structures with walls of finite conductivity. The developed 3D numerical method is fully time domain. It is based on special Staggered Finite Volume Time Domain (SFVTD) method and has no numerical dispersion in all three axial directions simultaneously. This results in large saving in computational time as well as improved accuracy. The resistive boundary model applies Surface Impedance Boundary Condition (SIBC) evaluation in time domain and covers boundary effects like frequency dependent conductivity, surface roughness and metal oxidation. A good agreement between numerical simulation and perturbation theory is obtained. In addition the new method allows implementation of moving mesh approach that considerably reduces requirements on computational resources. The developed method is especially effective for short range resistive wakefield calculations excited by ultra-short bunches used in FEL based LINACs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)