Author: Capatina, O.
Paper Title Page
MOBD2 Design and Prototyping of HL-LHC Double Quarter Wave Crab Cavities for SPS Test 64
 
  • S. Verdú-Andrés, S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • L. Alberty, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, N. Kuder, R. Leuxe, C. Zanoni
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • A. Ratti
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by US DOE via US LARP program, through BSA LLC contract No.DE-AC02-98CH10886 and by EU FP7 HiLumi LHC grant No.284404. Used NERSC resources by US DOE contract No.DE-AC02-05CH11231.
The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double-Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. A couple of DQW crab cavities are under preparation and will be tested with beam in the Super Proton Synchrotron (SPS) of CERN by 2017. This paper describes the design and prototyping of DQW crab cavities for the SPS test.
 
slides icon Slides MOBD2 [6.909 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA021 Status of HIE-ISOLDE SC Linac Upgrade 3151
 
  • A. Sublet, L. Alberty, K. Artoos, S. Calatroni, O. Capatina, M.A. Fraser, N.M. Jecklin, Y. Kadi, P. Maesen, G.J. Rosaz, K.M. Schirm, M. Taborelli, M. Therasse, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE-ISOLDE upgrade project at CERN aims at increasing the energy of radioactive beams from 3MeV/u up to 10 MeV/u with mass-to-charge ratio in the range 2.5-4.5. The objective is obtained by replacing part of the existing normal conducting linac with superconducting Nb/Cu cavities. The new accelerator requires the production of 32 superconducting cavities in three phases: 10 high-beta cavities for phase 1 (2016), 10 high-beta cavities for phase 2 (2017) and possibly 12 low-beta cavities for phase 3 (2020). Half of the phase 1 production is completed with 5 quarter-wave superconducting cavities ready to be installed in the first cryomodule. The status of the cavity production and the RF performance are presented. The optimal linac working configuration to minimize cryogenic load and maximize accelerating gradient is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI059 Higher Order Mode Filter Design for Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade 3627
 
  • B. P. Xiao, S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, S. Verdú-Andrés, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • G. Burt, B.D.S. Hall
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • R. Calaga, O. Capatina
    CERN, Geneva, Switzerland
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work partly supported by US LARP, by US DOE under contract No. DE-AC02-05CH11231 and through BSA under contract No. DE-AC02-98CH10886. Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404.
A double quarter wave crab cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multi-physics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI060 Cryogenic Test of Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade 3630
 
  • B. P. Xiao, S.A. Belomestnykh, I. Ben-Zvi, C. Cullen, L.R. Hammons, C. Marques, J. Skaritka, S. Verdú-Andrés, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • L. Alberty, R. Calaga, O. Capatina
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
 
  Funding: Work partly supported by US LARP, by US DOE under contract No. DE-AC02-05CH11231 and through BSA under contract No. DE-AC02-98CH10886. Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404.
A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)