Author: Byer, R.L.
Paper Title Page
WEPJE012 Design and Optimisation of Dielectric Laser Deflecting Structures 2698
 
  • K.P. Wootton, R.J. England, I.V. Makasyuk, Z. Wu
    SLAC, Menlo Park, California, USA
  • R.L. Byer, E.A. Peralta
    Stanford University, Stanford, California, USA
  • A.D. Tafel
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
 
  Funding: This work was supported by the U.S. Department of Energy under Grants DE-AC02-76SF00515, and DE-FG02-13ER41970.
Recent experimental demonstrations of dielectric laser-driven accelerator structures offer a path to the miniaturisation of accelerators. In order to accelerate particles to higher energies using a staged sequence of accelerating structures, integrating compatible micrometre-scale transverse deflecting structures into these accelerators is necessary. Using simulations, the present work outlines the design and optimisation of a fused-silica laser-driven grating deflecting structure for relativistic electron beams. Implications for device fabrication and experiments are outlined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPJE021 Fabrication and Demonstration of a Silicon Buried Grating Accelerator 2717
 
  • A.C. Ceballos, R.L. Byer, K.J. Leedle, E.A. Peralta, O. Solgaard, K. Soong
    Stanford University, Stanford, California, USA
  • R.J. England, I.V. Makasyuk, K.P. Wootton, Z. Wu
    SLAC, Menlo Park, California, USA
  • A. Hanuka
    Technion, Haifa, Israel
  • A.D. Tafel
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
 
  Funding: Work supported by the U.S. Department of Energy under Grants DE-AC02-76SF00515, DE-FG06-97ER41276.
Using optical electromagnetic fields in dielectric microstructures, we can realize higher-energy accelerator systems in a more compact, low-cost form than the current state-of-the-art. Dielectric, laser-driven accelerators (DLA) have recently been demonstrated using fused silica structures to achieve about an order-of-magnitude increase in accelerating gradient over conventional RF structures.* We leverage higher damage thresholds of silicon over metals and extensive micromachining capability to fabricate structures capable of electron acceleration. Our monolithic structure, the buried grating, consists of a grating formed on either side of a long channel via a deep reactive ion etch (DRIE).** The grating imposes a phase profile on an incoming laser pulse such that an electron experiences a net change in energy over the course of each optical cycle. This results in acceleration (or deceleration) as electrons travel down the channel. We have designed and fabricated such structures and begun testing at the SLAC National Accelerator Laboratory. We report on the progress toward demonstration of acceleration in these structures driven at 2um wavelength.
* E.A. Peralta et al., Nature 503 (2013)
** C.M. Chang and O. Solgaard, Appl. Phys. Lett. 104 (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)