Author: Blednykh, A.
Paper Title Page
MOPMN016 Decoherence due to Second Order Chromaticity in the NSLS-II Storage Ring 737
 
  • G. Bassi, A. Blednykh, J. Choi, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  We study decoherence effects due to second order chromaticity for small amplitude kicks, in order to estimate the energy spread from TbT data of the NSLS-II storage ring. The bare lattice case (no Damping Wigglers and Insertion devices) has been considered, due to the long transverse radiation damping time. To minimize the chromatic damping/antidamping from the slow-head tail effect, we used a short train of bunches distributed over consecutive rf-buckets with a high enough average current to obtain a good BPM signal. The vertical and horizontal betatron motion have been excited independently with pinger magnets. In this contribution we limit the discussion to the horizontal case.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMN021 NSLS-II Storage Ring BPM Button Development 748
 
  • A. Blednykh, B. Bacha, G. Bassi, W.X. Cheng, C. Hetzel, B.N. Kosciuk, D. Padrazo, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886
The NSLS-II BPM Button design and its development process have been described. Subjects discussed include BPM Button impedance optimization, design and construction, production, BPM Button selection and a first temperature measurements at 200mA average current within 1200 bunches.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMN025 Local Impedance Estimation of NSLS-II Storage Ring with Bumped Orbit 754
 
  • J. Choi, G. Bassi, A. Blednykh, Y. Hidaka
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract No: DE-AC02- 98CH10886
As the newly constructed 3rd generation light source, NSLS-II is expected to provide the synchrotron radiation of ultra high brightness and flux with advanced insertion devices. To minimize the beam emittance, damping wigglers are used and the small aperture is located at the straight section with the damping wiggler and the corresponding vacuum camber is NEG coated. We used the local bump method to find the effect on the beam from the narrow aperture and the paper shows the results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI012 Conceptual Design and Analysis of a Storage Ring Beam Position Monitor for the APS Upgrade 1170
 
  • B.K. Stillwell, R.M. Lill, R.R. Lindberg, M.M. O'Neill, B.G. Rocke, X. Sun
    ANL, Argonne, Ilinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Created by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory operated under Contract No. DE-AC02-06CH11357.
A conceptual design has been developed for a radio frequency (rf) pickup-type beam position monitor (BPM) for use in a multi-bend achromat (MBA) storage ring under consideration by the APS Upgrade project (APS-U). Beam feedback systems are expected to require fourteen rf BPMs per sector with exceptional sensitivity and mechanical stability. Simultaneously, BPM insertion length must be minimized to allow lattice designers the greatest freedom in selecting magnet lengths and locations. Envisioned is a conventional four probe arrangement integrated inside of a pair of rf-shielded bellows for mechanical isolation. Basic aspects of the design are presented along with the results of analyses which establish expected mechanical, electronic, and beam physics-related performance measures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAB2 First Collective Effects Measurements in NSLS-II with ID's 1332
 
  • A. Blednykh, B. Bacha, G. Bassi, W.X. Cheng, J. Choi, Y. Hidaka, Y. Li, B. Podobedov, T.V. Shaftan, V. Smalyuk, T. Tanabe, G.M. Wang, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886.
As another important milestone towards the final goal to store an average current of 500mA, the average current of 200mA, distributed within ~1000 bunches, was recently achieved in the NSLS-II storage ring after the installation of three Damping Wigglers and four In-Vacuum Undulators. First measurements of the collective effects and instability thresholds, both in single- and multi-bunch mode, are discussed.
 
slides icon Slides TUAB2 [2.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE077 Instability Thresholds for the Advanced Photon Source Multi- Bend Achromat Upgrade 1822
 
  • R.R. Lindberg
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An important operating mode for the multi-bend achromat (MBA) upgrade at the Advanced Photon Source (APS) calls for 200 mA average current divided evenly over 48 bunches. Ensuring that the desired 4.2 mA single bunch current can be stably stored requires a detailed understanding of the impedance in the MBA ring. We briefly discuss modeling sources of impedance using the electromagnetic codes GdfidL and ECHO, and how we then include both geometric and resistive wall wakefields using the tracking code elegant to predict collective instabilities. We first validate our procedures by comparing APS experimental measurements to tracking predictions using the APS storage ring impedance model. We then discuss the MBA impedance model, for which we find that a chromaticity of 5 units is sufficient to obtain the required 4.2 mA single bunch current. Finally, we mention certain design changes that may reduce the impedance and allow for a reduction in chromaticity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE078 Modeling of Impedance Effects for the APS-MBA Upgrade 1825
 
  • R.R. Lindberg
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Understanding the sources of impedance is critical to accelerator design, and only becomes more important as vacuum chambers become smaller and closer to the electron beam. The multibend achromat upgrade at the Advanced Photon Source (APS) requires small, 22-mm diameter vacuum chambers and even smaller (6 mm) gaps for the insertion devices, so that both rf heating and wakefield-driven transverse instabilities become important concerns. We discuss modeling the primary sources of geometric impedance using the electromagnetic finite difference codes GdfidL and ECHO, and how these codes are influencing vacuum and accelerator component design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA050 NSLS-II Injector Commissioning and Initial Operation 1944
 
  • E.B. Blum, B. Bacha, G. Bassi, J. Bengtsson, A. Blednykh, S. Buda, W.X. Cheng, J. Choi, J. Cupolo, R. D'Alsace, M.A. Davidsaver, J.H. De Long, L. Doom, D.J. Durfee, R.P. Fliller, M. Fulkerson, G. Ganetis, F. Gao, C. Gardner, W. Guo, R. Heese, Y. Hidaka, Y. Hu, M.P. Johanson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, S. Krinsky, Y. Li, W. Louie, M.A. Maggipinto, P. Marino, J. Mead, J. Oliva, D. Padrazo, K. Pedersen, B. Podobedov, R.S. Rainer, J. Rose, M. Santana, S. Seletskiy, T.V. Shaftan, O. Singh, P. Singh, V.V. Smaluk, R.M. Smith, T. Summers, J. Tagger, Y. Tian, W.H. Wahl, G.M. Wang, G.J. Weiner, F.J. Willeke, L. Yang, X. Yang, E. Zeitler, E. Zitvogel, P. Zuhoski
    BNL, Upton, Long Island, New York, USA
  • A. Akimov, P.B. Cheblakov, I.N. Churkin, A.A. Derbenev, S.M. Gurov, S.E. Karnaev, V.A. Kiselev, A.A. Korepanov, E.B. Levichev, S.V. Sinyatkin, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The injector for the National Synchrotron Light Source II storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC this has proven to be more than sufficient for storage ring commissioning. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of injector operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA053 Experience with First Turns Commissioning in NSLS-II Storage Ring 1950
 
  • S. Seletskiy, G. Bassi, J. Bengtsson, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, R.P. Fliller, W. Guo, R. Heese, Y. Hidaka, S.L. Kramer, Y. Li, B. Podobedov, T.V. Shaftan, G.M. Wang, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  In this paper we describe our experience with commissioning of the first turns in the NSLS-II storage ring. We discuss the problems that we encountered and show how applying a dedicated first turns commissioning software allowed us to diagnose and resolve these problems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA054 High Level Application for First Turns Commissioning in NSLS-II Storage Ring 1953
 
  • S. Seletskiy, A. Blednykh, J. Choi, Y. Hidaka, B. Podobedov, G. Shen, L. Yang
    BNL, Upton, Long Island, New York, USA
 
  The typical problems occurring during commissioning of the first turns in the storage rings include shorted coils or reversed polarity of the magnets, cross-cabling of magnets power supplies and reversed polarity of BPMs. In this paper we describe a dedicated high level control application, which was created and utilized for commissioning of the first turns in NSLS-II storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA005 Tools for NSLS II Commissioning 1971
 
  • G.M. Wang, G. Bassi, A. Blednykh, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo, S. Seletskiy, T.V. Shaftan, G. Shen, K. Shroff, O. Singh, T. Summers, Y. Tian, F.J. Willeke, H. Xu, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As many facilities worldwide, NSLS II uses the EPICS control system to monitor and control all accelerator hardware. Control system studio (CSS) is used for simple tasks such as monitoring, display, setting of PVs. browsing the historical data, et. al. For more complex accelerator physics applications, a collection of scripts are mainly written in Python and part from Matlab during commissioning. With the close collaboration and fully support from control group, more and more CSS features were developed for operation convenience and several high level applications are interfaced with users in CSS panels for daily use based on softiocs. This paper will present the tools that we have been using for commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA006 NSLS-II Storage Ring Insertion Device and Front-End Commissioning 1974
 
  • G.M. Wang, C. Amundsen, G. Bassi, J. Bengtsson, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, O.V. Chubar, T.M. Corwin, M.A. Davidsaver, L. Doom, W. Guo, D.A. Harder, P. He, Y. Hidaka, Y. Hu, P. Ilinski, C.A. Kitegi, S.L. Kramer, Y. Li, M. Musardo, D. Padrazo, B. Podobedov, K. Qian, R.S. Rainer, J. Rank, S. Seletskiy, T.V. Shaftan, S.K. Sharma, O. Singh, V. Smalyuk, R.M. Smith, T. Summers, T. Tanabe, F.J. Willeke, L. Yang, X. Yang, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. In the spring 2014, the storage ring was commissioning up to 50 mA without insertion device. In the fall, the project beamlines, includes seven insertion devices on six ID ports were commissioned within two and a half months. These beamlines consist of IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1, from the radiation sources elliptically polarizing undulator (EPU), damping wiggler (DW) and in vacuum undulator (IVU) to cover the VUV through the very hard x-ray range. In this paper, a number of commissioning and operation experiences are discussed here, such as injection, lifetime, ID residual field and compensation, source point stability, beam alignment and tools for control, monitor and beam protection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA007 NSLS II Booster Extended Integration Test 1977
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, W. Guo, K. Ha, Y. Hu, W. Louie, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, F.J. Willeke, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.E. Karnaev, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • V.V. Smaluk
    DLS, Oxfordshire, United Kingdom
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. While the installation activities in the booster-synchrotron are nearly completed and waiting for the authorization to start the booster commissioning, the injector and accelerator physics group have engaged into the Integrated Testing phase. We did the booster commissioning with simulated beam signals, called extended integrated testing (EIT) to prepare for the booster ring commissioning. It is to make sure the device function along with utilities, timing system and control system, to calibrate diagnostics system, debug High Level Applications, test and optimize all the operation screens to reduce the potential problems during booster commissioning with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)