Author: Biedron, S.
Paper Title Page
MOPMA054 Start-to-end Simulation of Free-electron Lasers 675
 
  • C.C. Hall, S. Biedron, H. Freund, S.V. Milton
    CSU, Fort Collins, Colorado, USA
 
  Start-to-end (S2E) modeling of free-electron lasers (FELs) normally requires the use of multiple codes to correctly capture the physics in each region of the machine. Codes such as PARMELA, IMPACT-T or MICHELLE, for instance, may be used to simulate the injector. From there the linac and transport line may be handled by codes such as DIMAD, ELEGANT or IMPACT-Z. Finally, at the FEL a wiggler interaction code such as GENESIS, GINGER, or MINERVA must be used. These codes may be optimized to work with a wide range in magnitude of macro-particle numbers (from 104-108 in different codes) and have different input formats. It is therefore necessary to have translator codes to provide a bridge between each section. It is essential that these translators be able to preserve the statistical properties of the bunch while raising or lowering the number of macro-particles used between codes. In this work we show a suite of such translators designed to facilitate S2E simulations of an FEL with a new wiggler code, MINERVA, and use these codes to provide benchmarking of MINERVA against other common wiggler simulation codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI028 Initial Experimental Results of a Machine Learning-Based Temperature Control System for an RF Gun 1217
 
  • A.L. Edelen, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • B.E. Chase, D.J. Crawford, N. Eddy, D.R. Edstrom, E.R. Harms, J. Ruan, J.K. Santucci, P. Stabile
    Fermilab, Batavia, Illinois, USA
 
  Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present experimental results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm for improved settling time, overshoot, and disturbance rejection relative to conventional techniques. Such improvements have implications for machine up-time and management of reflected power. This work is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI029 Electron Bombardment of ZnTe EO Bunch Charge Detector for Signal Lifetime Studies in Radiation Environment 1220
 
  • J.E. Williams, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • S.V. Benson, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Electro-optic detection of bunch charge distribution utilizing the nonlinear Pockel's and Kerr effect of materials has been implemented at various facilities as a method of passive detection for beam preservation throughout characterization. Most commonly, the inorganic II-VI material ZnTe is employed due to it's strong Pockel's EO effect and relatively high temporal resolution (~90 fs). Despite early exploration of radiation damage on ZnTe in exploration of semi-conductor materials in the 1970's, full characterization of EO response over radiation lifetime has yet to be performed. The following poster presents a method for ZnTe crystal characterization studies throughout radiation exposure at various energies and dosages by analyzing the changes in index of refraction including bulk uniformity, and THz signal response changes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA017 Pulsed-wire Measurements for Insertion Devices 1869
 
  • A. D'Audney, S. Biedron, S.V. Milton, S.A. Stellingwerff
    CSU, Fort Collins, Colorado, USA
 
  The performance of a Free Electron Laser (FELs) depends in part on the integrity of the magnetic field in the undulator. The magnetic field on the axis of the undulator is transverse and sinusoidally varying due to the periodic sequence of dipoles. The ideal trajectory of a relativistic electron bunch, inserted along the axis, is sinusoidal in the plane of oscillation. Phase errors are produced when the path of the electron is not the ideal sinusoidal trajectory, due to imperfections in the magnetic field. The result of such phase errors is a reduction of laser gain impacting overall FEL performance. A pulsed-wire method can be used to determine the profile of the magnetic field. This is achieved by sending a square current pulse through the wire, which will induce an interaction with the magnetic field. Measurement of the displacement in the wire over time using a motion detector yields the first or second integrals of the magnetic field. Dispersion in the wire can be corrected using algorithms resulting in higher accuracy. Once the fields are known, magnetic shims are placed where any corrections are needed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA018 An Improved Analytic Model of Electron Back-Bombardment in Thermionic Cathode RF Guns 1872
 
  • J.P. Edelen, S. Biedron, J.R. Harris, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  This paper describes work done at Colorado State University to improve upon the recent theory developed to predict the back-bombardment power in single-cell thermionic-cathode electron guns. The previous theory used a square-wave approximation of the time varying field to solve for the total kinetic energy deposited on the cathode due to the back-bombarded electrons. In addition the transit time factor was added as a correction to compensate for the non-sinusoidal field. By solving for the back-bombardment power using a sinusoidal field, the transit time factor can be removed and therefore a better overall model is produced. These alterations continue to accurately predict how back-bombardment varies as a function of the gun parameters and provides improvement when compared to the existing theory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA019 Simulation and Analysis of Laser/Electron Beam interaction for use as a Free Electron Laser 1875
 
  • J. Einstein, S. Biedron, H. Freund, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • G. Dattoli
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Through the use of simulation tools and theoretical analysis techniques, the Free Electron Laser process is investigated for a wiggler that is generated by an ultrafast laser system. The development and availability of such systems allows for novel FEL designs due to the high peak power of such lasers. Even though such high powers are possible, difficulties arise due to inhomogeneity in the laser pulse. This project looks at simulation results for a system with a realistic laser pulse profile and looks in to the pulse-shape effects on various system parameters. Models are presented for the expected behavior with important parameters noted, as well as highlighting possible difficulties that might occur experimentally. While head-on interaction has been proven experimentally for the short wavelength regime *, we believe that using a co-propagating laser can provide benefits that have currently been untested. This experimental setup is outlined in Lawler, J et al **, and we are currently simulating how the use of an ultrashort laser pulse as an electromagnetic wiggler will affect characteristics of the output radiation.
* Laundy, D.; et al. NIM-A vol 689. pp 108-114. OCT 11 2012
** Lawler, J.; et al. J. Phys. D: Appl. Phys. 46 (2013) 325501
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB1 Coherent Synchrotron Radiation in Energy Recovery Linacs 2387
 
  • C.C. Hall, S. Biedron, A.L. Edelen, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • S.V. Benson, D. Douglas, R. Li, C. Tennant
    JLab, Newport News, Virginia, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
 
  Collective beam effects, including coherent synchrotron radiation (CSR), have been studied on free-electron lasers (FELs). Here we will discuss a particular case of the CSR effects, that in energy-recovery linacs (ERLs). Special consideration is given to these machines because of their high average beam power and the architecture of the machine for energy recovery forces extreme bends. A recent study conducted on the JLab IR FEL looked at how CSR impacts both average energy and the energy spectrum of the beam. Such studies are important, both broadly, to the understanding of CSR and more specifically for a number of proposed ERL projects. A few proposed examples include the MEIC bunched beam cooler ERL design and ERL FELs for potential lithography purposes that would operate in the EUV range.  
slides icon Slides WEXB1 [16.383 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEXB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIC1
Session for Industry: Session Topics and Focus  
 
  • S. Biedron
    CSU, Fort Collins, Colorado, USA
 
  Session for Industry: Session Topics and Focus  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY063 Co-Linear X-Band Energy Booster (XCEB) Cavity and RF System Details 3421
 
  • T. Sipahi, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
 
  Due to their higher intrinsic shunt impedance X-band accelerating structures offer significant gradients with relatively modest input powers. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3-GHz, L-band accelerator system in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)