Paper | Title | Page |
---|---|---|
MOPMN016 | Decoherence due to Second Order Chromaticity in the NSLS-II Storage Ring | 737 |
|
||
We study decoherence effects due to second order chromaticity for small amplitude kicks, in order to estimate the energy spread from TbT data of the NSLS-II storage ring. The bare lattice case (no Damping Wigglers and Insertion devices) has been considered, due to the long transverse radiation damping time. To minimize the chromatic damping/antidamping from the slow-head tail effect, we used a short train of bunches distributed over consecutive rf-buckets with a high enough average current to obtain a good BPM signal. The vertical and horizontal betatron motion have been excited independently with pinger magnets. In this contribution we limit the discussion to the horizontal case. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMN021 | NSLS-II Storage Ring BPM Button Development | 748 |
|
||
Funding: Work supported by DOE contract DE-AC02-98CH10886 The NSLS-II BPM Button design and its development process have been described. Subjects discussed include BPM Button impedance optimization, design and construction, production, BPM Button selection and a first temperature measurements at 200mA average current within 1200 bunches. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMN025 | Local Impedance Estimation of NSLS-II Storage Ring with Bumped Orbit | 754 |
|
||
Funding: DOE contract No: DE-AC02- 98CH10886 As the newly constructed 3rd generation light source, NSLS-II is expected to provide the synchrotron radiation of ultra high brightness and flux with advanced insertion devices. To minimize the beam emittance, damping wigglers are used and the small aperture is located at the straight section with the damping wiggler and the corresponding vacuum camber is NEG coated. We used the local bump method to find the effect on the beam from the narrow aperture and the paper shows the results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUAB2 | First Collective Effects Measurements in NSLS-II with ID's | 1332 |
|
||
Funding: Work supported by DOE contract DE-AC02-98CH10886. As another important milestone towards the final goal to store an average current of 500mA, the average current of 200mA, distributed within ~1000 bunches, was recently achieved in the NSLS-II storage ring after the installation of three Damping Wigglers and four In-Vacuum Undulators. First measurements of the collective effects and instability thresholds, both in single- and multi-bunch mode, are discussed. |
||
![]() |
Slides TUAB2 [2.691 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAB2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMA050 | NSLS-II Injector Commissioning and Initial Operation | 1944 |
|
||
The injector for the National Synchrotron Light Source II storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC this has proven to be more than sufficient for storage ring commissioning. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of injector operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMA053 | Experience with First Turns Commissioning in NSLS-II Storage Ring | 1950 |
|
||
In this paper we describe our experience with commissioning of the first turns in the NSLS-II storage ring. We discuss the problems that we encountered and show how applying a dedicated first turns commissioning software allowed us to diagnose and resolve these problems. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA005 | Tools for NSLS II Commissioning | 1971 |
|
||
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As many facilities worldwide, NSLS II uses the EPICS control system to monitor and control all accelerator hardware. Control system studio (CSS) is used for simple tasks such as monitoring, display, setting of PVs. browsing the historical data, et. al. For more complex accelerator physics applications, a collection of scripts are mainly written in Python and part from Matlab during commissioning. With the close collaboration and fully support from control group, more and more CSS features were developed for operation convenience and several high level applications are interfaced with users in CSS panels for daily use based on softiocs. This paper will present the tools that we have been using for commissioning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA006 | NSLS-II Storage Ring Insertion Device and Front-End Commissioning | 1974 |
|
||
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. In the spring 2014, the storage ring was commissioning up to 50 mA without insertion device. In the fall, the project beamlines, includes seven insertion devices on six ID ports were commissioned within two and a half months. These beamlines consist of IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1, from the radiation sources elliptically polarizing undulator (EPU), damping wiggler (DW) and in vacuum undulator (IVU) to cover the VUV through the very hard x-ray range. In this paper, a number of commissioning and operation experiences are discussed here, such as injection, lifetime, ID residual field and compensation, source point stability, beam alignment and tools for control, monitor and beam protection. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA006 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |