Paper |
Title |
Page |
TUPTY050 |
Considerations for the Beam Dump System of a 100 TeV Centre-of-mass FCC hh Collider |
2132 |
|
- T. Kramer, M.G. Atanasov, M.J. Barnes, W. Bartmann, J. Borburgh, E. Carlier, F. Cerutti, L. Ducimetière, B. Goddard, A. Lechner, R. Losito, G.E. Steele, L.S. Stoel, J.A. Uythoven, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
A 100 TeV centre-of-mass energy frontier proton collider in a new tunnel of 80–100 km circumference is a central part of CERN’s Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam dump system, which for each ring will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule, more than an order of magnitude higher than planned for HL-LHC. The transverse proton beam energy densities are even more extreme, a factor of 100 above that of the presently operating LHC. The requirements for the beam dump subsystems are outlined, and the present technological limitations are described. First concepts for the beam dump system are presented and the feasibility is discussed, highlighting in particular the areas in which major technological progress will be needed. The potential implications on the overall machine and other key subsystems are described, including constraints on filling patterns, interlocking, beam intercepting devices and insertion design.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY050
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPMN067 |
Upgrade of the TCDQ Diluters for the LHC Beam Dump System |
3079 |
|
- M.G. Atanasov, W. Bartmann, J. Borburgh, C. Boucly, C. Bracco, L. Gentini, B. Moles, W.J.M. Weterings
CERN, Geneva, Switzerland
|
|
|
The TCDQ diluters are installed as part of the LHC beam dump system to protect the Q4 quadrupole and other downstream elements during a beam dump that is not synchronised with the abort gap, or in case of erratic firing of the extraction kickers. These diluter elements installed during Run 1 were compatible with beam up to 60 % of the nominal intensity, which was insufficient for the second run of the LHC. This paper describes the requirements for the upgrade done during the First Long Shutdown (LS1), to make the TCDQ compatible with the full 7 TeV LHC beam at intensities required for the future runs of the machine. Subsequently the mechanical design changes, implementation and commissioning of the TCDQ are reported.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN067
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|